MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval2 Structured version   Visualization version   GIF version

Theorem cantnffval2 9160
Description: An alternate definition of df-cnf 9127 which relies on cantnf 9158. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 9129 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnffval2 (𝜑 → (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnffval2
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4cantnf 9158 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
6 isof1o 7078 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
7 f1orel 6620 . . . 4 ((𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵) → Rel (𝐴 CNF 𝐵))
85, 6, 73syl 18 . . 3 (𝜑 → Rel (𝐴 CNF 𝐵))
9 dfrel2 6048 . . 3 (Rel (𝐴 CNF 𝐵) ↔ (𝐴 CNF 𝐵) = (𝐴 CNF 𝐵))
108, 9sylib 220 . 2 (𝜑(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵))
11 oecl 8164 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
122, 3, 11syl2anc 586 . . . . . 6 (𝜑 → (𝐴o 𝐵) ∈ On)
13 eloni 6203 . . . . . 6 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
1412, 13syl 17 . . . . 5 (𝜑 → Ord (𝐴o 𝐵))
15 isocnv 7085 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
165, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
171, 2, 3, 4oemapwe 9159 . . . . . . 7 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
1817simpld 497 . . . . . 6 (𝜑𝑇 We 𝑆)
19 ovex 7191 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
2019dmex 7618 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
211, 20eqeltri 2911 . . . . . . 7 𝑆 ∈ V
22 exse 5521 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2321, 22ax-mp 5 . . . . . 6 𝑇 Se 𝑆
24 eqid 2823 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2524oieu 9005 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2618, 23, 25sylancl 588 . . . . 5 (𝜑 → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2714, 16, 26mpbi2and 710 . . . 4 (𝜑 → ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2827simprd 498 . . 3 (𝜑(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
2928cnveqd 5748 . 2 (𝜑(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
3010, 29eqtr3d 2860 1 (𝜑 → (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  {copab 5130   E cep 5466   Se wse 5514   We wwe 5515  ccnv 5556  dom cdm 5557  Rel wrel 5562  Ord word 6192  Oncon0 6193  1-1-ontowf1o 6356  cfv 6357   Isom wiso 6358  (class class class)co 7158  o coe 8103  OrdIsocoi 8975   CNF ccnf 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-oexp 8110  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-cnf 9127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator