MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Visualization version   GIF version

Theorem cantnfle 9128
Description: A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴o 𝑥) ·o (𝐹𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnfle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
cantnfle (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnfle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7158 . . 3 ((𝐹𝐶) = ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) = ((𝐴o 𝐶) ·o ∅))
21sseq1d 3998 . 2 ((𝐹𝐶) = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹)))
3 ovexd 7185 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ∈ V)
4 cantnfs.s . . . . . . . . . . 11 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . . . . 11 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . . . . 11 (𝜑𝐵 ∈ On)
7 cantnfcl.g . . . . . . . . . . 11 𝐺 = OrdIso( E , (𝐹 supp ∅))
8 cantnfcl.f . . . . . . . . . . 11 (𝜑𝐹𝑆)
94, 5, 6, 7, 8cantnfcl 9124 . . . . . . . . . 10 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simpld 497 . . . . . . . . 9 (𝜑 → E We (𝐹 supp ∅))
117oiiso 8995 . . . . . . . . 9 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
123, 10, 11syl2anc 586 . . . . . . . 8 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13 isof1o 7070 . . . . . . . 8 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1412, 13syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1514adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
16 f1ocnv 6622 . . . . . 6 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
17 f1of 6610 . . . . . 6 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
1815, 16, 173syl 18 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
19 cantnfle.c . . . . . . 7 (𝜑𝐶𝐵)
2019anim1i 616 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅))
214, 5, 6cantnfs 9123 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
228, 21mpbid 234 . . . . . . . . . 10 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
2322simpld 497 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2423adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹:𝐵𝐴)
2524ffnd 6510 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹 Fn 𝐵)
266adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐵 ∈ On)
27 0ex 5204 . . . . . . . 8 ∅ ∈ V
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ∅ ∈ V)
29 elsuppfn 7832 . . . . . . 7 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3025, 26, 28, 29syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3120, 30mpbird 259 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅))
3218, 31ffvelrnd 6847 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺𝐶) ∈ dom 𝐺)
339simprd 498 . . . . . 6 (𝜑 → dom 𝐺 ∈ ω)
3433adantr 483 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → dom 𝐺 ∈ ω)
35 eqimss 4023 . . . . . . . . . 10 (𝑥 = dom 𝐺𝑥 ⊆ dom 𝐺)
3635biantrurd 535 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥)))
37 eleq2 2901 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ dom 𝐺))
3836, 37bitr3d 283 . . . . . . . 8 (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝐺𝐶) ∈ dom 𝐺))
39 fveq2 6665 . . . . . . . . 9 (𝑥 = dom 𝐺 → (𝐻𝑥) = (𝐻‘dom 𝐺))
4039sseq2d 3999 . . . . . . . 8 (𝑥 = dom 𝐺 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
4138, 40imbi12d 347 . . . . . . 7 (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
4241imbi2d 343 . . . . . 6 (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))) ↔ ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))))
43 sseq1 3992 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
44 eleq2 2901 . . . . . . . . 9 (𝑥 = ∅ → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ ∅))
4543, 44anbi12d 632 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅)))
46 fveq2 6665 . . . . . . . . 9 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
4746sseq2d 3999 . . . . . . . 8 (𝑥 = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
4845, 47imbi12d 347 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))))
49 sseq1 3992 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺))
50 eleq2 2901 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ 𝑦))
5149, 50anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)))
52 fveq2 6665 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
5352sseq2d 3999 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
5451, 53imbi12d 347 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦))))
55 sseq1 3992 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺))
56 eleq2 2901 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ suc 𝑦))
5755, 56anbi12d 632 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦)))
58 fveq2 6665 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
5958sseq2d 3999 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
6057, 59imbi12d 347 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
61 noel 4296 . . . . . . . . . 10 ¬ (𝐺𝐶) ∈ ∅
6261pm2.21i 119 . . . . . . . . 9 ((𝐺𝐶) ∈ ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6362adantl 484 . . . . . . . 8 ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6463a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
65 fvex 6678 . . . . . . . . . . . 12 (𝐺𝐶) ∈ V
6665elsuc 6255 . . . . . . . . . . 11 ((𝐺𝐶) ∈ suc 𝑦 ↔ ((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦))
67 sssucid 6263 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ suc 𝑦
68 sstr 3975 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺)
6967, 68mpan 688 . . . . . . . . . . . . . . . 16 (suc 𝑦 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺)
7069ad2antrl 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺)
71 simprr 771 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (𝐺𝐶) ∈ 𝑦)
72 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
7370, 71, 72syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
74 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
7574cantnfvalf 9122 . . . . . . . . . . . . . . . . . . . 20 𝐻:ω⟶On
7675ffvelrni 6845 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝐻𝑦) ∈ On)
7776ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ∈ On)
785ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On)
796ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On)
80 suppssdm 7837 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 supp ∅) ⊆ dom 𝐹
8180, 23fssdm 6525 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
8281ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵)
83 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺)
84 sucidg 6264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
8584ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦)
8683, 85sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺)
877oif 8988 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺:dom 𝐺⟶(𝐹 supp ∅)
8887ffvelrni 6845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
8986, 88syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ (𝐹 supp ∅))
9082, 89sseldd 3968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ 𝐵)
91 onelon 6211 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ (𝐺𝑦) ∈ 𝐵) → (𝐺𝑦) ∈ On)
9279, 90, 91syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ On)
93 oecl 8156 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐺𝑦) ∈ On) → (𝐴o (𝐺𝑦)) ∈ On)
9478, 92, 93syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴o (𝐺𝑦)) ∈ On)
9523ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵𝐴)
9695, 90ffvelrnd 6847 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ 𝐴)
97 onelon 6211 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ 𝐴) → (𝐹‘(𝐺𝑦)) ∈ On)
9878, 96, 97syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ On)
99 omcl 8155 . . . . . . . . . . . . . . . . . . 19 (((𝐴o (𝐺𝑦)) ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
10094, 98, 99syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
101 oaword2 8173 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑦) ∈ On ∧ ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
10277, 100, 101syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
1034, 5, 6, 7, 8, 74cantnfsuc 9127 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
104103ad4ant13 749 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
105102, 104sseqtrrd 4008 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (𝐻‘suc 𝑦))
106 sstr 3975 . . . . . . . . . . . . . . . . 17 ((((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) ∧ (𝐻𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
107106expcom 416 . . . . . . . . . . . . . . . 16 ((𝐻𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
108105, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
109108adantrr 715 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
11073, 109syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
111110expr 459 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
112 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝐶) = 𝑦)
113112fveq2d 6669 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = (𝐺𝑦))
114 f1ocnvfv2 7028 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝐶)) = 𝐶)
11515, 31, 114syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺‘(𝐺𝐶)) = 𝐶)
116115ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = 𝐶)
117113, 116eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝑦) = 𝐶)
118117oveq2d 7166 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐴o (𝐺𝑦)) = (𝐴o 𝐶))
119117fveq2d 6669 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐹‘(𝐺𝑦)) = (𝐹𝐶))
120118, 119oveq12d 7168 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) = ((𝐴o 𝐶) ·o (𝐹𝐶)))
121 oaword1 8172 . . . . . . . . . . . . . . . . . 18 ((((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On ∧ (𝐻𝑦) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
122100, 77, 121syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
123122adantrr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
124120, 123eqsstrrd 4006 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
125103ad4ant13 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
126124, 125sseqtrrd 4008 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
127126expr 459 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
128127a1dd 50 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
129111, 128jaod 855 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
13066, 129syl5bi 244 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
131130expimpd 456 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
132131com23 86 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
133132expcom 416 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))))
13448, 54, 60, 64, 133finds2 7604 . . . . . 6 (𝑥 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))))
13542, 134vtoclga 3574 . . . . 5 (dom 𝐺 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
13634, 135mpcom 38 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
13732, 136mpd 15 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))
1384, 5, 6, 7, 8, 74cantnfval 9125 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
139138adantr 483 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
140137, 139sseqtrrd 4008 . 2 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
141 onelon 6211 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
1426, 19, 141syl2anc 586 . . . . 5 (𝜑𝐶 ∈ On)
143 oecl 8156 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1445, 142, 143syl2anc 586 . . . 4 (𝜑 → (𝐴o 𝐶) ∈ On)
145 om0 8136 . . . 4 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146144, 145syl 17 . . 3 (𝜑 → ((𝐴o 𝐶) ·o ∅) = ∅)
147 0ss 4350 . . 3 ∅ ⊆ ((𝐴 CNF 𝐵)‘𝐹)
148146, 147eqsstrdi 4021 . 2 (𝜑 → ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
1492, 140, 148pm2.61ne 3102 1 (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  wss 3936  c0 4291   class class class wbr 5059   E cep 5459   We wwe 5508  ccnv 5549  dom cdm 5550  Oncon0 6186  suc csuc 6188   Fn wfn 6345  wf 6346  1-1-ontowf1o 6349  cfv 6350   Isom wiso 6351  (class class class)co 7150  cmpo 7152  ωcom 7574   supp csupp 7824  seqωcseqom 8077   +o coa 8093   ·o comu 8094  o coe 8095   finSupp cfsupp 8827  OrdIsocoi 8967   CNF ccnf 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-oadd 8100  df-omul 8101  df-oexp 8102  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-cnf 9119
This theorem is referenced by:  cantnflem3  9148
  Copyright terms: Public domain W3C validator