Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Visualization version   GIF version

Theorem cantnfle 8519
 Description: A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴 ↑𝑜 𝑥) ·𝑜 (𝐹‘𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶 ∈ 𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
cantnfle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
cantnfle (𝜑 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnfle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6618 . . 3 ((𝐹𝐶) = ∅ → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) = ((𝐴𝑜 𝐶) ·𝑜 ∅))
21sseq1d 3616 . 2 ((𝐹𝐶) = ∅ → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴𝑜 𝐶) ·𝑜 ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹)))
3 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
4 suppssdm 7260 . . . . . . . . . . 11 (𝐹 supp ∅) ⊆ dom 𝐹
5 cantnfcl.f . . . . . . . . . . . . . 14 (𝜑𝐹𝑆)
6 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
7 cantnfs.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ On)
86, 7, 3cantnfs 8514 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
95, 8mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
109simpld 475 . . . . . . . . . . . 12 (𝜑𝐹:𝐵𝐴)
11 fdm 6013 . . . . . . . . . . . 12 (𝐹:𝐵𝐴 → dom 𝐹 = 𝐵)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐵)
134, 12syl5sseq 3637 . . . . . . . . . 10 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
143, 13ssexd 4770 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ∈ V)
15 cantnfcl.g . . . . . . . . . . 11 𝐺 = OrdIso( E , (𝐹 supp ∅))
166, 7, 3, 15, 5cantnfcl 8515 . . . . . . . . . 10 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
1716simpld 475 . . . . . . . . 9 (𝜑 → E We (𝐹 supp ∅))
1815oiiso 8393 . . . . . . . . 9 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
1914, 17, 18syl2anc 692 . . . . . . . 8 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
20 isof1o 6533 . . . . . . . 8 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
2119, 20syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
2221adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
23 f1ocnv 6111 . . . . . 6 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
24 f1of 6099 . . . . . 6 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
2522, 23, 243syl 18 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
26 cantnfle.c . . . . . . 7 (𝜑𝐶𝐵)
2726anim1i 591 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅))
2810adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹:𝐵𝐴)
29 ffn 6007 . . . . . . . 8 (𝐹:𝐵𝐴𝐹 Fn 𝐵)
3028, 29syl 17 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹 Fn 𝐵)
313adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐵 ∈ On)
32 0ex 4755 . . . . . . . 8 ∅ ∈ V
3332a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ∅ ∈ V)
34 elsuppfn 7255 . . . . . . 7 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3530, 31, 33, 34syl3anc 1323 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3627, 35mpbird 247 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅))
3725, 36ffvelrnd 6321 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺𝐶) ∈ dom 𝐺)
3816simprd 479 . . . . . 6 (𝜑 → dom 𝐺 ∈ ω)
3938adantr 481 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → dom 𝐺 ∈ ω)
40 eqimss 3641 . . . . . . . . . 10 (𝑥 = dom 𝐺𝑥 ⊆ dom 𝐺)
4140biantrurd 529 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥)))
42 eleq2 2687 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ dom 𝐺))
4341, 42bitr3d 270 . . . . . . . 8 (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝐺𝐶) ∈ dom 𝐺))
44 fveq2 6153 . . . . . . . . 9 (𝑥 = dom 𝐺 → (𝐻𝑥) = (𝐻‘dom 𝐺))
4544sseq2d 3617 . . . . . . . 8 (𝑥 = dom 𝐺 → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
4643, 45imbi12d 334 . . . . . . 7 (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
4746imbi2d 330 . . . . . 6 (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥))) ↔ ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))))
48 sseq1 3610 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
49 eleq2 2687 . . . . . . . . 9 (𝑥 = ∅ → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ ∅))
5048, 49anbi12d 746 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅)))
51 fveq2 6153 . . . . . . . . 9 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
5251sseq2d 3617 . . . . . . . 8 (𝑥 = ∅ → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘∅)))
5350, 52imbi12d 334 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘∅))))
54 sseq1 3610 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺))
55 eleq2 2687 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ 𝑦))
5654, 55anbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)))
57 fveq2 6153 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
5857sseq2d 3617 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)))
5956, 58imbi12d 334 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦))))
60 sseq1 3610 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺))
61 eleq2 2687 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ suc 𝑦))
6260, 61anbi12d 746 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦)))
63 fveq2 6153 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
6463sseq2d 3617 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
6562, 64imbi12d 334 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
66 noel 3900 . . . . . . . . . 10 ¬ (𝐺𝐶) ∈ ∅
6766pm2.21i 116 . . . . . . . . 9 ((𝐺𝐶) ∈ ∅ → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘∅))
6867adantl 482 . . . . . . . 8 ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘∅))
6968a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘∅)))
70 fvex 6163 . . . . . . . . . . . 12 (𝐺𝐶) ∈ V
7170elsuc 5758 . . . . . . . . . . 11 ((𝐺𝐶) ∈ suc 𝑦 ↔ ((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦))
72 sssucid 5766 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ suc 𝑦
73 sstr 3595 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺)
7472, 73mpan 705 . . . . . . . . . . . . . . . 16 (suc 𝑦 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺)
7574ad2antrl 763 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺)
76 simprr 795 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (𝐺𝐶) ∈ 𝑦)
77 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)))
7875, 76, 77syl2anc 692 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)))
79 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
8079cantnfvalf 8513 . . . . . . . . . . . . . . . . . . . 20 𝐻:ω⟶On
8180ffvelrni 6319 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝐻𝑦) ∈ On)
8281ad2antlr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ∈ On)
837ad3antrrr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On)
843ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On)
8513ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵)
86 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺)
87 sucidg 5767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
8887ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦)
8986, 88sseldd 3588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺)
9015oif 8386 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺:dom 𝐺⟶(𝐹 supp ∅)
9190ffvelrni 6319 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ (𝐹 supp ∅))
9385, 92sseldd 3588 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ 𝐵)
94 onelon 5712 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ (𝐺𝑦) ∈ 𝐵) → (𝐺𝑦) ∈ On)
9584, 93, 94syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ On)
96 oecl 7569 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐺𝑦) ∈ On) → (𝐴𝑜 (𝐺𝑦)) ∈ On)
9783, 95, 96syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴𝑜 (𝐺𝑦)) ∈ On)
9810ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵𝐴)
9998, 93ffvelrnd 6321 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ 𝐴)
100 onelon 5712 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ 𝐴) → (𝐹‘(𝐺𝑦)) ∈ On)
10183, 99, 100syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ On)
102 omcl 7568 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑜 (𝐺𝑦)) ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ On) → ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ∈ On)
10397, 101, 102syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ∈ On)
104 oaword2 7585 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑦) ∈ On ∧ ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ∈ On) → (𝐻𝑦) ⊆ (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
10582, 103, 104syl2anc 692 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
106 simplll 797 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝜑)
107 simplr 791 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ ω)
1086, 7, 3, 15, 5, 79cantnfsuc 8518 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
109106, 107, 108syl2anc 692 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
110105, 109sseqtr4d 3626 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (𝐻‘suc 𝑦))
111 sstr 3595 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦) ∧ (𝐻𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
112111expcom 451 . . . . . . . . . . . . . . . 16 ((𝐻𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
113110, 112syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
114113adantrr 752 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
11578, 114syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
116115expr 642 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
117 simprr 795 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝐶) = 𝑦)
118117fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = (𝐺𝑦))
119 f1ocnvfv2 6493 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝐶)) = 𝐶)
12022, 36, 119syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺‘(𝐺𝐶)) = 𝐶)
121120ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = 𝐶)
122118, 121eqtr3d 2657 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝑦) = 𝐶)
123122oveq2d 6626 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐴𝑜 (𝐺𝑦)) = (𝐴𝑜 𝐶))
124122fveq2d 6157 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐹‘(𝐺𝑦)) = (𝐹𝐶))
125123, 124oveq12d 6628 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) = ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)))
126 oaword1 7584 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ∈ On ∧ (𝐻𝑦) ∈ On) → ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ⊆ (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
127103, 82, 126syl2anc 692 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ⊆ (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
128127adantrr 752 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) ⊆ (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
129125, 128eqsstr3d 3624 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
130109adantrr 752 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝐺𝑦)) ·𝑜 (𝐹‘(𝐺𝑦))) +𝑜 (𝐻𝑦)))
131129, 130sseqtr4d 3626 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
132131expr 642 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
133132a1dd 50 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
134116, 133jaod 395 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
13571, 134syl5bi 232 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
136135expimpd 628 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
137136com23 86 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
138137expcom 451 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))))
13953, 59, 65, 69, 138finds2 7048 . . . . . 6 (𝑥 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻𝑥))))
14047, 139vtoclga 3261 . . . . 5 (dom 𝐺 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
14139, 140mpcom 38 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
14237, 141mpd 15 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))
1436, 7, 3, 15, 5, 79cantnfval 8516 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
144143adantr 481 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
145142, 144sseqtr4d 3626 . 2 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
146 onelon 5712 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
1473, 26, 146syl2anc 692 . . . . 5 (𝜑𝐶 ∈ On)
148 oecl 7569 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝑜 𝐶) ∈ On)
1497, 147, 148syl2anc 692 . . . 4 (𝜑 → (𝐴𝑜 𝐶) ∈ On)
150 om0 7549 . . . 4 ((𝐴𝑜 𝐶) ∈ On → ((𝐴𝑜 𝐶) ·𝑜 ∅) = ∅)
151149, 150syl 17 . . 3 (𝜑 → ((𝐴𝑜 𝐶) ·𝑜 ∅) = ∅)
152 0ss 3949 . . 3 ∅ ⊆ ((𝐴 CNF 𝐵)‘𝐹)
153151, 152syl6eqss 3639 . 2 (𝜑 → ((𝐴𝑜 𝐶) ·𝑜 ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
1542, 145, 153pm2.61ne 2875 1 (𝜑 → ((𝐴𝑜 𝐶) ·𝑜 (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3189   ⊆ wss 3559  ∅c0 3896   class class class wbr 4618   E cep 4988   We wwe 5037  ◡ccnv 5078  dom cdm 5079  Oncon0 5687  suc csuc 5689   Fn wfn 5847  ⟶wf 5848  –1-1-onto→wf1o 5851  ‘cfv 5852   Isom wiso 5853  (class class class)co 6610   ↦ cmpt2 6612  ωcom 7019   supp csupp 7247  seq𝜔cseqom 7494   +𝑜 coa 7509   ·𝑜 comu 7510   ↑𝑜 coe 7511   finSupp cfsupp 8226  OrdIsocoi 8365   CNF ccnf 8509 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-seqom 7495  df-1o 7512  df-oadd 7516  df-omul 7517  df-oexp 7518  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-oi 8366  df-cnf 8510 This theorem is referenced by:  cantnflem3  8539
 Copyright terms: Public domain W3C validator