Step | Hyp | Ref
| Expression |
1 | | ovex 6718 |
. . . . . 6
⊢ (𝐺 supp ∅) ∈
V |
2 | | cantnflem1.o |
. . . . . . 7
⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) |
3 | 2 | oion 8482 |
. . . . . 6
⊢ ((𝐺 supp ∅) ∈ V →
dom 𝑂 ∈
On) |
4 | 1, 3 | mp1i 13 |
. . . . 5
⊢ (𝜑 → dom 𝑂 ∈ On) |
5 | | uniexg 6997 |
. . . . 5
⊢ (dom
𝑂 ∈ On → ∪ dom 𝑂 ∈ V) |
6 | | sucidg 5841 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
8 | | cantnfs.s |
. . . . . . . . . 10
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
9 | | cantnfs.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ On) |
10 | | cantnfs.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ On) |
11 | | oemapval.t |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
12 | | oemapval.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
13 | | oemapval.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
14 | | oemapvali.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹𝑇𝐺) |
15 | | oemapvali.x |
. . . . . . . . . 10
⊢ 𝑋 = ∪
{𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cantnflem1a 8620 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
17 | | n0i 3953 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐺 supp ∅) → ¬ (𝐺 supp ∅) =
∅) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝐺 supp ∅) = ∅) |
19 | | ovexd 6720 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) ∈ V) |
20 | 8, 9, 10, 2, 13 | cantnfcl 8602 |
. . . . . . . . . . 11
⊢ (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω)) |
21 | 20 | simpld 474 |
. . . . . . . . . 10
⊢ (𝜑 → E We (𝐺 supp ∅)) |
22 | 2 | oien 8484 |
. . . . . . . . . 10
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
dom 𝑂 ≈ (𝐺 supp ∅)) |
23 | 19, 21, 22 | syl2anc 694 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑂 ≈ (𝐺 supp ∅)) |
24 | | breq1 4688 |
. . . . . . . . . 10
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐺 supp ∅) ↔ ∅
≈ (𝐺 supp
∅))) |
25 | | ensymb 8045 |
. . . . . . . . . . 11
⊢ (∅
≈ (𝐺 supp ∅)
↔ (𝐺 supp ∅)
≈ ∅) |
26 | | en0 8060 |
. . . . . . . . . . 11
⊢ ((𝐺 supp ∅) ≈ ∅
↔ (𝐺 supp ∅) =
∅) |
27 | 25, 26 | bitri 264 |
. . . . . . . . . 10
⊢ (∅
≈ (𝐺 supp ∅)
↔ (𝐺 supp ∅) =
∅) |
28 | 24, 27 | syl6bb 276 |
. . . . . . . . 9
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐺 supp ∅) ↔ (𝐺 supp ∅) =
∅)) |
29 | 23, 28 | syl5ibcom 235 |
. . . . . . . 8
⊢ (𝜑 → (dom 𝑂 = ∅ → (𝐺 supp ∅) = ∅)) |
30 | 18, 29 | mtod 189 |
. . . . . . 7
⊢ (𝜑 → ¬ dom 𝑂 = ∅) |
31 | 20 | simprd 478 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑂 ∈ ω) |
32 | | nnlim 7120 |
. . . . . . . 8
⊢ (dom
𝑂 ∈ ω →
¬ Lim dom 𝑂) |
33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ¬ Lim dom 𝑂) |
34 | | ioran 510 |
. . . . . . 7
⊢ (¬
(dom 𝑂 = ∅ ∨ Lim
dom 𝑂) ↔ (¬ dom
𝑂 = ∅ ∧ ¬ Lim
dom 𝑂)) |
35 | 30, 33, 34 | sylanbrc 699 |
. . . . . 6
⊢ (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)) |
36 | 2 | oicl 8475 |
. . . . . . 7
⊢ Ord dom
𝑂 |
37 | | unizlim 5882 |
. . . . . . 7
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
38 | 36, 37 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
39 | 35, 38 | mtbird 314 |
. . . . 5
⊢ (𝜑 → ¬ dom 𝑂 = ∪
dom 𝑂) |
40 | | orduniorsuc 7072 |
. . . . . . 7
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂)) |
41 | 36, 40 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom
𝑂)) |
42 | 41 | ord 391 |
. . . . 5
⊢ (𝜑 → (¬ dom 𝑂 = ∪
dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂)) |
43 | 39, 42 | mpd 15 |
. . . 4
⊢ (𝜑 → dom 𝑂 = suc ∪ dom
𝑂) |
44 | 7, 43 | eleqtrrd 2733 |
. . 3
⊢ (𝜑 → ∪ dom 𝑂 ∈ dom 𝑂) |
45 | 2 | oiiso 8483 |
. . . . . . . 8
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
46 | 19, 21, 45 | syl2anc 694 |
. . . . . . 7
⊢ (𝜑 → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
47 | | isof1o 6613 |
. . . . . . 7
⊢ (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
48 | 46, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
49 | | f1ocnv 6187 |
. . . . . 6
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) → ◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂) |
50 | | f1of 6175 |
. . . . . 6
⊢ (◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
51 | 48, 49, 50 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
52 | 51, 16 | ffvelrnd 6400 |
. . . 4
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ dom 𝑂) |
53 | | elssuni 4499 |
. . . 4
⊢ ((◡𝑂‘𝑋) ∈ dom 𝑂 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
54 | 52, 53 | syl 17 |
. . 3
⊢ (𝜑 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
55 | 43, 31 | eqeltrrd 2731 |
. . . . 5
⊢ (𝜑 → suc ∪ dom 𝑂 ∈ ω) |
56 | | peano2b 7123 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω) |
57 | 55, 56 | sylibr 224 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ ω) |
58 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → (𝑦 ∈ dom 𝑂 ↔ ∪ dom
𝑂 ∈ dom 𝑂)) |
59 | | sseq2 3660 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂)) |
60 | 58, 59 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = ∪
dom 𝑂 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂))) |
61 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∪
dom 𝑂 → (𝑂‘𝑦) = (𝑂‘∪ dom
𝑂)) |
62 | 61 | sseq2d 3666 |
. . . . . . . . . . 11
⊢ (𝑦 = ∪
dom 𝑂 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘∪ dom
𝑂))) |
63 | 62 | ifbid 4141 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
dom 𝑂 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)) |
64 | 63 | mpteq2dv 4778 |
. . . . . . . . 9
⊢ (𝑦 = ∪
dom 𝑂 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
65 | 64 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)))) |
66 | | suceq 5828 |
. . . . . . . . 9
⊢ (𝑦 = ∪
dom 𝑂 → suc 𝑦 = suc ∪ dom 𝑂) |
67 | 66 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → (𝐻‘suc 𝑦) = (𝐻‘suc ∪ dom
𝑂)) |
68 | 65, 67 | eleq12d 2724 |
. . . . . . 7
⊢ (𝑦 = ∪
dom 𝑂 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))) |
69 | 60, 68 | imbi12d 333 |
. . . . . 6
⊢ (𝑦 = ∪
dom 𝑂 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)))) |
70 | 69 | imbi2d 329 |
. . . . 5
⊢ (𝑦 = ∪
dom 𝑂 → ((𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦))) ↔ (𝜑 → ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))))) |
71 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂)) |
72 | | sseq2 3660 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ ∅)) |
73 | 71, 72 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅))) |
74 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → (𝑂‘𝑦) = (𝑂‘∅)) |
75 | 74 | sseq2d 3666 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘∅))) |
76 | 75 | ifbid 4141 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)) |
77 | 76 | mpteq2dv 4778 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) |
78 | 77 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)))) |
79 | | suceq 5828 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
80 | 79 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐻‘suc 𝑦) = (𝐻‘suc ∅)) |
81 | 78, 80 | eleq12d 2724 |
. . . . . . 7
⊢ (𝑦 = ∅ → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
82 | 73, 81 | imbi12d 333 |
. . . . . 6
⊢ (𝑦 = ∅ → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅)))) |
83 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 ∈ dom 𝑂 ↔ 𝑢 ∈ dom 𝑂)) |
84 | | sseq2 3660 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ 𝑢)) |
85 | 83, 84 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢))) |
86 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝑂‘𝑦) = (𝑂‘𝑢)) |
87 | 86 | sseq2d 3666 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘𝑢))) |
88 | 87 | ifbid 4141 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
89 | 88 | mpteq2dv 4778 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
90 | 89 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) |
91 | | suceq 5828 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → suc 𝑦 = suc 𝑢) |
92 | 91 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc 𝑢)) |
93 | 90, 92 | eleq12d 2724 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢))) |
94 | 85, 93 | imbi12d 333 |
. . . . . 6
⊢ (𝑦 = 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)))) |
95 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → (𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂)) |
96 | | sseq2 3660 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ suc 𝑢)) |
97 | 95, 96 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = suc 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢))) |
98 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝑢 → (𝑂‘𝑦) = (𝑂‘suc 𝑢)) |
99 | 98 | sseq2d 3666 |
. . . . . . . . . . 11
⊢ (𝑦 = suc 𝑢 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢))) |
100 | 99 | ifbid 4141 |
. . . . . . . . . 10
⊢ (𝑦 = suc 𝑢 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) |
101 | 100 | mpteq2dv 4778 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) |
102 | 101 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)))) |
103 | | suceq 5828 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢) |
104 | 103 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc suc 𝑢)) |
105 | 102, 104 | eleq12d 2724 |
. . . . . . 7
⊢ (𝑦 = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
106 | 97, 105 | imbi12d 333 |
. . . . . 6
⊢ (𝑦 = suc 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
107 | | f1ocnvfv2 6573 |
. . . . . . . . . . . . 13
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
108 | 48, 16, 107 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
109 | 108 | sseq2d 3666 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ 𝑋)) |
110 | 109 | ifbid 4141 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)) |
111 | 110 | mpteq2dv 4778 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) |
112 | 111 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)))) |
113 | | cantnflem1.h |
. . . . . . . . 9
⊢ 𝐻 =
seq𝜔((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑𝑜 (𝑂‘𝑘)) ·𝑜 (𝐺‘(𝑂‘𝑘))) +𝑜 𝑧)), ∅) |
114 | 8, 9, 10, 11, 12, 13, 14, 15, 2, 113 | cantnflem1d 8623 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |
115 | 112, 114 | eqeltrd 2730 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |
116 | | ss0 4007 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (◡𝑂‘𝑋) = ∅) |
117 | 116 | fveq2d 6233 |
. . . . . . . . . . . . 13
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑂‘(◡𝑂‘𝑋)) = (𝑂‘∅)) |
118 | 117 | sseq2d 3666 |
. . . . . . . . . . . 12
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ (𝑂‘∅))) |
119 | 118 | ifbid 4141 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)) |
120 | 119 | mpteq2dv 4778 |
. . . . . . . . . 10
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) |
121 | 120 | fveq2d 6233 |
. . . . . . . . 9
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)))) |
122 | | suceq 5828 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) = ∅ → suc (◡𝑂‘𝑋) = suc ∅) |
123 | 116, 122 | syl 17 |
. . . . . . . . . 10
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → suc (◡𝑂‘𝑋) = suc ∅) |
124 | 123 | fveq2d 6233 |
. . . . . . . . 9
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝐻‘suc (◡𝑂‘𝑋)) = (𝐻‘suc ∅)) |
125 | 121, 124 | eleq12d 2724 |
. . . . . . . 8
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
126 | 125 | adantl 481 |
. . . . . . 7
⊢ ((∅
∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
127 | 115, 126 | syl5ibcom 235 |
. . . . . 6
⊢ (𝜑 → ((∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
128 | | ordelon 5785 |
. . . . . . . . . . . . 13
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂) → (◡𝑂‘𝑋) ∈ On) |
129 | 36, 52, 128 | sylancr 696 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ On) |
130 | 129 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → (◡𝑂‘𝑋) ∈ On) |
131 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord dom 𝑂) |
132 | | ordelon 5785 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
133 | 131, 132 | sylan 487 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
134 | | onsseleq 5803 |
. . . . . . . . . . 11
⊢ (((◡𝑂‘𝑋) ∈ On ∧ suc 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 ↔ ((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢))) |
135 | 130, 133,
134 | syl2anc 694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 ↔ ((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢))) |
136 | | sucelon 7059 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ On ↔ suc 𝑢 ∈ On) |
137 | 133, 136 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On) |
138 | | eloni 5771 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ On → Ord 𝑢) |
139 | 137, 138 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → Ord 𝑢) |
140 | | ordsssuc 5850 |
. . . . . . . . . . . . 13
⊢ (((◡𝑂‘𝑋) ∈ On ∧ Ord 𝑢) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
141 | 130, 139,
140 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
142 | | ordtr 5775 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord dom
𝑂 → Tr dom 𝑂) |
143 | 36, 142 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Tr dom 𝑂) |
144 | | simprl 809 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂) |
145 | | trsuc 5848 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂) |
146 | 143, 144,
145 | syl2anc 694 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂) |
147 | | simprr 811 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ⊆ 𝑢) |
148 | 146, 147 | jca 553 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) |
149 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐴 ∈ On) |
150 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐵 ∈ On) |
151 | | oecl 7662 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜
𝐵) ∈
On) |
152 | 149, 150,
151 | syl2anc 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 ↑𝑜 𝐵) ∈ On) |
153 | 8, 149, 150 | cantnff 8609 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑𝑜 𝐵)) |
154 | 8, 9, 10 | cantnfs 8601 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
155 | 12, 154 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
156 | 155 | simpld 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
157 | 156 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ 𝐴) |
158 | 8, 9, 10 | cantnfs 8601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
159 | 13, 158 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
160 | 159 | simpld 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
161 | 8, 9, 10, 11, 12, 13, 14, 15 | oemapvali 8619 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
162 | 161 | simp1d 1093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
163 | 160, 162 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) |
164 | | ne0i 3954 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺‘𝑋) ∈ 𝐴 → 𝐴 ≠ ∅) |
165 | 163, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ≠ ∅) |
166 | | on0eln0 5818 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
167 | 9, 166 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
168 | 165, 167 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∅ ∈ 𝐴) |
169 | 168 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝐴) |
170 | 157, 169 | ifcld 4164 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ 𝐴) |
171 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
172 | 170, 171 | fmptd 6425 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)):𝐵⟶𝐴) |
173 | | mptexg 6525 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐵 ∈ On → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V) |
174 | 10, 173 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V) |
175 | | funmpt 5964 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fun
(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
176 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → Fun (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
177 | 155 | simprd 478 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹 finSupp ∅) |
178 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 supp ∅) = (𝐹 supp ∅) |
179 | | eqimss2 3691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹 supp ∅) = (𝐹 supp ∅) → (𝐹 supp ∅) ⊆ (𝐹 supp ∅)) |
180 | 178, 179 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅)) |
181 | | 0ex 4823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ V |
182 | 181 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ∅ ∈
V) |
183 | 156, 180,
10, 182 | suppssr 7371 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹‘𝑥) = ∅) |
184 | 183 | ifeq1d 4137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅)) |
185 | | ifid 4158 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅) =
∅ |
186 | 184, 185 | syl6eq 2701 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
187 | 186, 10 | suppss2 7374 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅)) |
188 | | fsuppsssupp 8332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V ∧ Fun (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∧ (𝐹 finSupp ∅ ∧ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅))) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅) |
189 | 174, 176,
177, 187, 188 | syl22anc 1367 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅) |
190 | 8, 9, 10 | cantnfs 8601 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆 ↔ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)):𝐵⟶𝐴 ∧ (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅))) |
191 | 172, 189,
190 | mpbir2and 977 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆) |
192 | 191 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆) |
193 | 153, 192 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐴 ↑𝑜 𝐵)) |
194 | | onelon 5786 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↑𝑜
𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐴 ↑𝑜 𝐵)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On) |
195 | 152, 193,
194 | syl2anc 694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On) |
196 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → dom 𝑂 ∈ ω) |
197 | | elnn 7117 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((suc
𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → suc 𝑢 ∈
ω) |
198 | 144, 196,
197 | syl2anc 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ ω) |
199 | 113 | cantnfvalf 8600 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻:ω⟶On |
200 | 199 | ffvelrni 6398 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑢 ∈ ω →
(𝐻‘suc 𝑢) ∈ On) |
201 | 198, 200 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc 𝑢) ∈ On) |
202 | | suppssdm 7353 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 supp ∅) ⊆ dom 𝐺 |
203 | | fdm 6089 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:𝐵⟶𝐴 → dom 𝐺 = 𝐵) |
204 | 160, 203 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → dom 𝐺 = 𝐵) |
205 | 202, 204 | syl5sseq 3686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝐵) |
206 | 205 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵) |
207 | 2 | oif 8476 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑂:dom 𝑂⟶(𝐺 supp ∅) |
208 | 207 | ffvelrni 6398 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc
𝑢 ∈ dom 𝑂 → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅)) |
209 | 144, 208 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅)) |
210 | 206, 209 | sseldd 3637 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ 𝐵) |
211 | | onelon 5786 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ On ∧ (𝑂‘suc 𝑢) ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On) |
212 | 150, 210,
211 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ On) |
213 | | oecl 7662 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ∈ On) |
214 | 149, 212,
213 | syl2anc 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ∈ On) |
215 | 156 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐹:𝐵⟶𝐴) |
216 | 215, 210 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) |
217 | | onelon 5786 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On) |
218 | 149, 216,
217 | syl2anc 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On) |
219 | | omcl 7661 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↑𝑜
(𝑂‘suc 𝑢)) ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ On) → ((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) ∈ On) |
220 | 214, 218,
219 | syl2anc 694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) ∈ On) |
221 | | oaord 7672 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On ∧ (𝐻‘suc 𝑢) ∈ On ∧ ((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) ∈ On) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))) |
222 | 195, 201,
220, 221 | syl3anc 1366 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))) |
223 | | ifeq1 4123 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅)) |
224 | | ifid 4158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅) =
∅ |
225 | 223, 224 | syl6eq 2701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = ∅) |
226 | | ifeq1 4123 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), ∅, ∅)) |
227 | | ifid 4158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), ∅, ∅) =
∅ |
228 | 226, 227 | syl6eq 2701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = ∅) |
229 | 225, 228 | eqeq12d 2666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑥) = ∅ → (if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) ↔ ∅ =
∅)) |
230 | | onss 7032 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
231 | 10, 230 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 ⊆ On) |
232 | 231 | sselda 3636 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
233 | 232 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
234 | 212 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On) |
235 | | onsseleq 5803 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
236 | 233, 234,
235 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
237 | 236 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
238 | 233 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → 𝑥 ∈ On) |
239 | 207 | ffvelrni 6398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ dom 𝑂 → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
240 | 146, 239 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
241 | 206, 240 | sseldd 3637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ 𝐵) |
242 | | onelon 5786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐵 ∈ On ∧ (𝑂‘𝑢) ∈ 𝐵) → (𝑂‘𝑢) ∈ On) |
243 | 150, 241,
242 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ On) |
244 | 243 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑂‘𝑢) ∈ On) |
245 | | onsssuc 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ suc (𝑂‘𝑢))) |
246 | 238, 244,
245 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ suc (𝑂‘𝑢))) |
247 | | vex 3234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑢 ∈ V |
248 | 247 | sucid 5842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑢 ∈ suc 𝑢 |
249 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
250 | | isorel 6616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → (𝑢 E suc 𝑢 ↔ (𝑂‘𝑢) E (𝑂‘suc 𝑢))) |
251 | 249, 146,
144, 250 | syl12anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 E suc 𝑢 ↔ (𝑂‘𝑢) E (𝑂‘suc 𝑢))) |
252 | 247 | sucex 7053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ suc 𝑢 ∈ V |
253 | 252 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 E suc 𝑢 ↔ 𝑢 ∈ suc 𝑢) |
254 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑂‘suc 𝑢) ∈ V |
255 | 254 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘𝑢) E (𝑂‘suc 𝑢) ↔ (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢)) |
256 | 251, 253,
255 | 3bitr3g 302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ suc 𝑢 ↔ (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢))) |
257 | 248, 256 | mpbii 223 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢)) |
258 | | eloni 5771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘suc 𝑢) ∈ On → Ord (𝑂‘suc 𝑢)) |
259 | 212, 258 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Ord (𝑂‘suc 𝑢)) |
260 | | ordelsuc 7062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑂‘𝑢) ∈ On ∧ Ord (𝑂‘suc 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢))) |
261 | 243, 259,
260 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢))) |
262 | 257, 261 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢)) |
263 | 262 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢)) |
264 | 263 | sseld 3635 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ suc (𝑂‘𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
265 | 246, 264 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
266 | | simprr 811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ 𝑥) |
267 | 249 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
268 | 267, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
269 | 8, 9, 10, 11, 12, 13, 14, 15, 2 | cantnflem1c 8622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅)) |
270 | | f1ocnvfv2 6573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
271 | 268, 269,
270 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
272 | 266, 271 | eleqtrrd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥))) |
273 | 146 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑢 ∈ dom 𝑂) |
274 | 268, 49, 50 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
275 | 274, 269 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
276 | | isorel 6616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂)) → (𝑢 E (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)))) |
277 | 267, 273,
275, 276 | syl12anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 E (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)))) |
278 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (◡𝑂‘𝑥) ∈ V |
279 | 278 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑢 E (◡𝑂‘𝑥) ↔ 𝑢 ∈ (◡𝑂‘𝑥)) |
280 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑂‘(◡𝑂‘𝑥)) ∈ V |
281 | 280 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥))) |
282 | 277, 279,
281 | 3bitr3g 302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥)))) |
283 | 272, 282 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑢 ∈ (◡𝑂‘𝑥)) |
284 | | ordelon 5785 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂) → (◡𝑂‘𝑥) ∈ On) |
285 | 36, 275, 284 | sylancr 696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (◡𝑂‘𝑥) ∈ On) |
286 | | eloni 5771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((◡𝑂‘𝑥) ∈ On → Ord (◡𝑂‘𝑥)) |
287 | 285, 286 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → Ord (◡𝑂‘𝑥)) |
288 | | ordelsuc 7062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑢 ∈ (◡𝑂‘𝑥) ∧ Ord (◡𝑂‘𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ suc 𝑢 ⊆ (◡𝑂‘𝑥))) |
289 | 283, 287,
288 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ suc 𝑢 ⊆ (◡𝑂‘𝑥))) |
290 | 283, 289 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ⊆ (◡𝑂‘𝑥)) |
291 | 144 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ∈ dom 𝑂) |
292 | 36, 291, 132 | sylancr 696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ∈ On) |
293 | | ontri1 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((suc
𝑢 ∈ On ∧ (◡𝑂‘𝑥) ∈ On) → (suc 𝑢 ⊆ (◡𝑂‘𝑥) ↔ ¬ (◡𝑂‘𝑥) ∈ suc 𝑢)) |
294 | 292, 285,
293 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (suc 𝑢 ⊆ (◡𝑂‘𝑥) ↔ ¬ (◡𝑂‘𝑥) ∈ suc 𝑢)) |
295 | 290, 294 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ¬ (◡𝑂‘𝑥) ∈ suc 𝑢) |
296 | | isorel 6616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((◡𝑂‘𝑥) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((◡𝑂‘𝑥) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢))) |
297 | 267, 275,
291, 296 | syl12anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢))) |
298 | 252 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑂‘𝑥) E suc 𝑢 ↔ (◡𝑂‘𝑥) ∈ suc 𝑢) |
299 | 254 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢)) |
300 | 297, 298,
299 | 3bitr3g 302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) ∈ suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢))) |
301 | 271 | eleq1d 2715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
302 | 300, 301 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) ∈ suc 𝑢 ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
303 | 295, 302 | mtbid 313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝑂‘suc 𝑢)) |
304 | 303 | expr 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → ((𝑂‘𝑢) ∈ 𝑥 → ¬ 𝑥 ∈ (𝑂‘suc 𝑢))) |
305 | 304 | con2d 129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → ¬ (𝑂‘𝑢) ∈ 𝑥)) |
306 | | ontri1 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑥)) |
307 | 238, 244,
306 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑥)) |
308 | 305, 307 | sylibrd 249 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → 𝑥 ⊆ (𝑂‘𝑢))) |
309 | 265, 308 | impbid 202 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
310 | 309 | orbi1d 739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → ((𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
311 | 237, 310 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
312 | | orcom 401 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢))) |
313 | 311, 312 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)))) |
314 | 313 | ifbid 4141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) |
315 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → ∅ = ∅) |
316 | 229, 314,
315 | pm2.61ne 2908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) |
317 | 316 | mpteq2dva 4777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) |
318 | 317 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)))) |
319 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹‘𝑥) ∈ V |
320 | 319, 181 | ifex 4189 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V |
321 | 320 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
322 | 321 | ralrimivw 2996 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∀𝑥 ∈ 𝐵 if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
323 | 171 | fnmpt 6058 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑥 ∈
𝐵 if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵) |
324 | 322, 323 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵) |
325 | 181 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∅ ∈ V) |
326 | | suppvalfn 7347 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑦 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅}) |
327 | | nfcv 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦𝐵 |
328 | | nfcv 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑥𝐵 |
329 | | nffvmpt1 6237 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) |
330 | | nfcv 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑥∅ |
331 | 329, 330 | nfne 2923 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅ |
332 | | nfv 1883 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ |
333 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) = ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥)) |
334 | 333 | neeq1d 2882 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑥 → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅ ↔ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅)) |
335 | 327, 328,
331, 332, 334 | cbvrab 3229 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑦 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅} = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅} |
336 | 326, 335 | syl6eq 2701 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅}) |
337 | 324, 150,
325, 336 | syl3anc 1366 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅}) |
338 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
339 | 320 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
340 | 338, 339 | fvmpt2d 6332 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) = if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
341 | 340 | neeq1d 2882 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅)) |
342 | 339 | biantrurd 528 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ ↔ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅))) |
343 | | dif1o 7625 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜) ↔ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅)) |
344 | 342, 343 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜))) |
345 | 341, 344 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜))) |
346 | 345 | rabbidva 3219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅} = {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜)}) |
347 | 337, 346 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜)}) |
348 | 320, 343 | mpbiran 973 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜) ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅) |
349 | | ifeq1 4123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅)) |
350 | 349, 185 | syl6eq 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
351 | 350 | necon3i 2855 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → (𝐹‘𝑥) ≠ ∅) |
352 | | iffalse 4128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑥 ⊆ (𝑂‘𝑢) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
353 | 352 | necon1ai 2850 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → 𝑥 ⊆ (𝑂‘𝑢)) |
354 | 351, 353 | jca 553 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → ((𝐹‘𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂‘𝑢))) |
355 | 265 | expimpd 628 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂‘𝑢)) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
356 | 354, 355 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → 𝑥 ∈ (𝑂‘suc 𝑢))) |
357 | 348, 356 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
358 | 357 | 3impia 1280 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵 ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜)) → 𝑥 ∈ (𝑂‘suc 𝑢)) |
359 | 358 | rabssdv 3715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1𝑜)} ⊆ (𝑂‘suc 𝑢)) |
360 | 347, 359 | eqsstrd 3672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝑂‘suc 𝑢)) |
361 | | eqeq1 2655 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (𝑥 = (𝑂‘suc 𝑢) ↔ 𝑦 = (𝑂‘suc 𝑢))) |
362 | | sseq1 3659 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑦 ⊆ (𝑂‘𝑢))) |
363 | 361, 362 | orbi12d 746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → ((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)) ↔ (𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)))) |
364 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
365 | 363, 364 | ifbieq1d 4142 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
366 | 365 | cbvmptv 4783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) = (𝑦 ∈ 𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
367 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = (𝑂‘suc 𝑢) → (𝐹‘𝑦) = (𝐹‘(𝑂‘suc 𝑢))) |
368 | 367 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 = (𝑂‘suc 𝑢)) → (𝐹‘𝑦) = (𝐹‘(𝑂‘suc 𝑢))) |
369 | 368 | ifeq1da 4149 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) |
370 | 362, 364 | ifbieq1d 4142 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
371 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹‘𝑦) ∈ V |
372 | 371, 181 | ifex 4189 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅) ∈ V |
373 | 370, 171,
372 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) = if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
374 | 373 | ifeq2d 4138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅))) |
375 | | ifor 4168 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
376 | 374, 375 | syl6eqr 2703 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
377 | 369, 376 | eqtr3d 2687 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
378 | 377 | mpteq2ia 4773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) = (𝑦 ∈ 𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
379 | 366, 378 | eqtr4i 2676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) = (𝑦 ∈ 𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) |
380 | 8, 149, 150, 192, 210, 216, 360, 379 | cantnfp1 8616 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))))) |
381 | 380 | simprd 478 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))))) |
382 | 318, 381 | eqtrd 2685 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))))) |
383 | 8, 9, 10, 2, 13, 113 | cantnfsuc 8605 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑢 ∈ ω) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))) |
384 | 198, 383 | syldan 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))) |
385 | 161 | simp3d 1095 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
386 | 385 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
387 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
388 | 129 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ On) |
389 | 137 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ On) |
390 | | onsssuc 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((◡𝑂‘𝑋) ∈ On ∧ 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
391 | 388, 389,
390 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
392 | 147, 391 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ suc 𝑢) |
393 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ dom 𝑂) |
394 | | isorel 6616 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((◡𝑂‘𝑋) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((◡𝑂‘𝑋) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢))) |
395 | 249, 393,
144, 394 | syl12anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢))) |
396 | 252 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((◡𝑂‘𝑋) E suc 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢) |
397 | 254 | epelc 5060 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢)) |
398 | 395, 396,
397 | 3bitr3g 302 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ∈ suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢))) |
399 | 392, 398 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢)) |
400 | 387, 399 | eqeltrrd 2731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑋 ∈ (𝑂‘suc 𝑢)) |
401 | | eleq2 2719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ (𝑂‘suc 𝑢))) |
402 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝐹‘𝑤) = (𝐹‘(𝑂‘suc 𝑢))) |
403 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝐺‘𝑤) = (𝐺‘(𝑂‘suc 𝑢))) |
404 | 402, 403 | eqeq12d 2666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑂‘suc 𝑢) → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢)))) |
405 | 401, 404 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝑂‘suc 𝑢) → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))) |
406 | 405 | rspcv 3336 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘suc 𝑢) ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))) |
407 | 210, 386,
400, 406 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))) |
408 | 407 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) = ((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢)))) |
409 | 408 | oveq1d 6705 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))) |
410 | 384, 409 | eqtr4d 2688 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))) |
411 | 382, 410 | eleq12d 2724 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢) ↔ (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))) |
412 | 222, 411 | bitr4d 271 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
413 | 412 | biimpd 219 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
414 | 148, 413 | embantd 59 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
415 | 414 | expr 642 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
416 | 141, 415 | sylbird 250 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ∈ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
417 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑂‘(◡𝑂‘𝑋)) = (𝑂‘suc 𝑢)) |
418 | 417 | sseq2d 3666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢))) |
419 | 418 | ifbid 4141 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) |
420 | 419 | mpteq2dv 4778 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) |
421 | 420 | fveq2d 6233 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)))) |
422 | | suceq 5828 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → suc (◡𝑂‘𝑋) = suc suc 𝑢) |
423 | 422 | fveq2d 6233 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝐻‘suc (◡𝑂‘𝑋)) = (𝐻‘suc suc 𝑢)) |
424 | 421, 423 | eleq12d 2724 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
425 | 115, 424 | syl5ibcom 235 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
426 | 425 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
427 | 426 | a1dd 50 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) = suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
428 | 416, 427 | jaod 394 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → (((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
429 | 135, 428 | sylbid 230 |
. . . . . . . . 9
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
430 | 429 | expimpd 628 |
. . . . . . . 8
⊢ (𝜑 → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
431 | 430 | com23 86 |
. . . . . . 7
⊢ (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
432 | 431 | a1i 11 |
. . . . . 6
⊢ (𝑢 ∈ ω → (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))) |
433 | 82, 94, 106, 127, 432 | finds2 7136 |
. . . . 5
⊢ (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)))) |
434 | 70, 433 | vtoclga 3303 |
. . . 4
⊢ (∪ dom 𝑂 ∈ ω → (𝜑 → ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)))) |
435 | 57, 434 | mpcom 38 |
. . 3
⊢ (𝜑 → ((∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))) |
436 | 44, 54, 435 | mp2and 715 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)) |
437 | 156 | feqmptd 6288 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥))) |
438 | | eqeq2 2662 |
. . . . . 6
⊢ ((𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅) → ((𝐹‘𝑥) = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
439 | | eqeq2 2662 |
. . . . . 6
⊢ (∅
= if(𝑥 ⊆ (𝑂‘∪ dom 𝑂), (𝐹‘𝑥), ∅) → ((𝐹‘𝑥) = ∅ ↔ (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
440 | | eqidd 2652 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ⊆ (𝑂‘∪ dom
𝑂)) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
441 | 207 | ffvelrni 6398 |
. . . . . . . . . . . . . 14
⊢ (∪ dom 𝑂 ∈ dom 𝑂 → (𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅)) |
442 | 44, 441 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅)) |
443 | 205, 442 | sseldd 3637 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ 𝐵) |
444 | | onelon 5786 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ 𝐵) → (𝑂‘∪ dom
𝑂) ∈
On) |
445 | 10, 443, 444 | syl2anc 694 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈
On) |
446 | 445 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘∪ dom
𝑂) ∈
On) |
447 | | ontri1 5795 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ On) → (𝑥 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑥)) |
448 | 232, 446,
447 | syl2anc 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑥)) |
449 | 448 | con2bid 343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑂‘∪ dom
𝑂) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂))) |
450 | | simprl 809 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ 𝐵) |
451 | 385 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
452 | | eloni 5771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂‘𝑋) ∈ On → Ord (◡𝑂‘𝑋)) |
453 | 129, 452 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord (◡𝑂‘𝑋)) |
454 | | orduni 7036 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord dom
𝑂 → Ord ∪ dom 𝑂) |
455 | 36, 454 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ Ord ∪ dom 𝑂 |
456 | | ordtri1 5794 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
(◡𝑂‘𝑋) ∧ Ord ∪ dom
𝑂) → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
457 | 453, 455,
456 | sylancl 695 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
458 | 54, 457 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋)) |
459 | | isorel 6616 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
460 | 46, 44, 52, 459 | syl12anc 1364 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
461 | | fvex 6239 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑂‘𝑋) ∈ V |
462 | 461 | epelc 5060 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑋)) |
463 | | fvex 6239 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑂‘(◡𝑂‘𝑋)) ∈ V |
464 | 463 | epelc 5060 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋))) |
465 | 460, 462,
464 | 3bitr3g 302 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)))) |
466 | 108 | eleq2d 2716 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
467 | 465, 466 | bitrd 268 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
468 | 458, 467 | mtbid 313 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑂‘∪ dom
𝑂) ∈ 𝑋) |
469 | | onelon 5786 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
470 | 10, 162, 469 | syl2anc 694 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ On) |
471 | | ontri1 5795 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ On) → (𝑋 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
472 | 470, 445,
471 | syl2anc 694 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
473 | 468, 472 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ (𝑂‘∪ dom
𝑂)) |
474 | 473 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ⊆ (𝑂‘∪ dom
𝑂)) |
475 | | simprr 811 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝑂‘∪ dom
𝑂) ∈ 𝑥) |
476 | 470 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ∈ On) |
477 | 232 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ On) |
478 | | ontr2 5810 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂‘∪ dom
𝑂) ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
479 | 476, 477,
478 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂‘∪ dom
𝑂) ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
480 | 474, 475,
479 | mp2and 715 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ∈ 𝑥) |
481 | | eleq2 2719 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥)) |
482 | | fveq2 6229 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
483 | | fveq2 6229 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝐺‘𝑤) = (𝐺‘𝑥)) |
484 | 482, 483 | eqeq12d 2666 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
485 | 481, 484 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
486 | 485 | rspcv 3336 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
487 | 450, 451,
480, 486 | syl3c 66 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
488 | 475 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘∪ dom
𝑂) ∈ 𝑥) |
489 | 46 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
490 | 44 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∪ dom 𝑂 ∈ dom 𝑂) |
491 | 51 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
492 | | ffvelrn 6397 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂:(𝐺 supp ∅)⟶dom 𝑂 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
493 | 491, 492 | sylancom 702 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
494 | | isorel 6616 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑥)))) |
495 | 489, 490,
493, 494 | syl12anc 1364 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 E (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑥)))) |
496 | 278 | epelc 5060 |
. . . . . . . . . . . . . . . 16
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑥) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑥)) |
497 | 280 | epelc 5060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥))) |
498 | 495, 496,
497 | 3bitr3g 302 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥)))) |
499 | 48 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
500 | 499, 270 | sylancom 702 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
501 | 500 | eleq2d 2716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) |
502 | 498, 501 | bitrd 268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) |
503 | 488, 502 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∪ dom 𝑂 ∈ (◡𝑂‘𝑥)) |
504 | | elssuni 4499 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑥) ∈ dom 𝑂 → (◡𝑂‘𝑥) ⊆ ∪ dom
𝑂) |
505 | 493, 504 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ⊆ ∪ dom
𝑂) |
506 | 36, 493, 284 | sylancr 696 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ On) |
507 | 506, 286 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → Ord (◡𝑂‘𝑥)) |
508 | | ordtri1 5794 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
(◡𝑂‘𝑥) ∧ Ord ∪ dom
𝑂) → ((◡𝑂‘𝑥) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥))) |
509 | 507, 455,
508 | sylancl 695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((◡𝑂‘𝑥) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥))) |
510 | 505, 509 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥)) |
511 | 503, 510 | pm2.65da 599 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝐺 supp ∅)) |
512 | 450, 511 | eldifd 3618 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) |
513 | | ssid 3657 |
. . . . . . . . . . . . 13
⊢ (𝐺 supp ∅) ⊆ (𝐺 supp ∅) |
514 | 513 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅)) |
515 | 160, 514,
10, 182 | suppssr 7371 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺‘𝑥) = ∅) |
516 | 512, 515 | syldan 486 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐺‘𝑥) = ∅) |
517 | 487, 516 | eqtrd 2685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐹‘𝑥) = ∅) |
518 | 517 | expr 642 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑂‘∪ dom
𝑂) ∈ 𝑥 → (𝐹‘𝑥) = ∅)) |
519 | 449, 518 | sylbird 250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂) → (𝐹‘𝑥) = ∅)) |
520 | 519 | imp 444 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂)) → (𝐹‘𝑥) = ∅) |
521 | 438, 439,
440, 520 | ifbothda 4156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)) |
522 | 521 | mpteq2dva 4777 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
523 | 437, 522 | eqtrd 2685 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
524 | 523 | fveq2d 6233 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)))) |
525 | 8, 9, 10, 2, 13, 113 | cantnfval 8603 |
. . 3
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘dom 𝑂)) |
526 | 43 | fveq2d 6233 |
. . 3
⊢ (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc ∪ dom
𝑂)) |
527 | 525, 526 | eqtrd 2685 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘suc ∪ dom
𝑂)) |
528 | 436, 524,
527 | 3eltr4d 2745 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘𝐺)) |