MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1c Structured version   Visualization version   GIF version

Theorem cantnflem1c 9144
Description: Lemma for cantnf 9150. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) (Proof shortened by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1c ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1c
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
21ad3antrrr 728 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐵 ∈ On)
3 simplr 767 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥𝐵)
4 oemapval.g . . . . . 6 (𝜑𝐺𝑆)
5 cantnfs.s . . . . . . 7 𝑆 = dom (𝐴 CNF 𝐵)
6 cantnfs.a . . . . . . 7 (𝜑𝐴 ∈ On)
75, 6, 1cantnfs 9123 . . . . . 6 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
84, 7mpbid 234 . . . . 5 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 497 . . . 4 (𝜑𝐺:𝐵𝐴)
109ffnd 6510 . . 3 (𝜑𝐺 Fn 𝐵)
1110ad3antrrr 728 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝐺 Fn 𝐵)
12 oemapval.t . . . . . . 7 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
13 oemapval.f . . . . . . 7 (𝜑𝐹𝑆)
14 oemapvali.r . . . . . . 7 (𝜑𝐹𝑇𝐺)
15 oemapvali.x . . . . . . 7 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
16 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
175, 6, 1, 12, 13, 4, 14, 15, 16cantnflem1b 9143 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
1817ad2antrr 724 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ⊆ (𝑂𝑢))
19 simprr 771 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑢) ∈ 𝑥)
205, 6, 1, 12, 13, 4, 14, 15oemapvali 9141 . . . . . . . . 9 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
2120simp1d 1138 . . . . . . . 8 (𝜑𝑋𝐵)
22 onelon 6211 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
231, 21, 22syl2anc 586 . . . . . . 7 (𝜑𝑋 ∈ On)
2423ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋 ∈ On)
25 onss 7499 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
261, 25syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ On)
2726sselda 3967 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ∈ On)
2827ad4ant13 749 . . . . . 6 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ On)
29 ontr2 6233 . . . . . 6 ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3024, 28, 29syl2anc 586 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂𝑢) ∧ (𝑂𝑢) ∈ 𝑥) → 𝑋𝑥))
3118, 19, 30mp2and 697 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑋𝑥)
32 eleq2w 2896 . . . . . 6 (𝑤 = 𝑥 → (𝑋𝑤𝑋𝑥))
33 fveq2 6665 . . . . . . 7 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
34 fveq2 6665 . . . . . . 7 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3533, 34eqeq12d 2837 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑥) = (𝐺𝑥)))
3632, 35imbi12d 347 . . . . 5 (𝑤 = 𝑥 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥))))
3720simp3d 1140 . . . . . 6 (𝜑 → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3837ad3antrrr 728 . . . . 5 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
3936, 38, 3rspcdva 3625 . . . 4 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥)))
4031, 39mpd 15 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) = (𝐺𝑥))
41 simprl 769 . . 3 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐹𝑥) ≠ ∅)
4240, 41eqnetrrd 3084 . 2 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝐺𝑥) ≠ ∅)
43 fvn0elsupp 7840 . 2 (((𝐵 ∈ On ∧ 𝑥𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑥) ≠ ∅)) → 𝑥 ∈ (𝐺 supp ∅))
442, 3, 11, 42, 43syl22anc 836 1 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3936  c0 4291   cuni 4832   class class class wbr 5059  {copab 5121   E cep 5459  ccnv 5549  dom cdm 5550  Oncon0 6186  suc csuc 6188   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150   supp csupp 7824   finSupp cfsupp 8827  OrdIsocoi 8967   CNF ccnf 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-cnf 9119
This theorem is referenced by:  cantnflem1  9146
  Copyright terms: Public domain W3C validator