MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt2 Structured version   Visualization version   GIF version

Theorem cantnflt2 8514
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnflt2.f (𝜑𝐹𝑆)
cantnflt2.a (𝜑 → ∅ ∈ 𝐴)
cantnflt2.c (𝜑𝐶 ∈ On)
cantnflt2.s (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴𝑜 𝐶))

Proof of Theorem cantnflt2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2621 . . 3 OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅))
5 cantnflt2.f . . 3 (𝜑𝐹𝑆)
6 eqid 2621 . . 3 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 8509 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))))
8 cantnflt2.a . . 3 (𝜑 → ∅ ∈ 𝐴)
9 cantnflt2.c . . . . 5 (𝜑𝐶 ∈ On)
10 cantnflt2.s . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
119, 10ssexd 4765 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ V)
124oion 8385 . . . 4 ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On)
13 sucidg 5762 . . . 4 (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
1411, 12, 133syl 18 . . 3 (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
151, 2, 3, 4, 5cantnfcl 8508 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω))
1615simpld 475 . . . . . 6 (𝜑 → E We (𝐹 supp ∅))
174oiiso 8386 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
1811, 16, 17syl2anc 692 . . . . 5 (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
19 isof1o 6527 . . . . 5 (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅))
20 f1ofo 6101 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅))
21 foima 6077 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2218, 19, 20, 214syl 19 . . . 4 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2322, 10eqsstrd 3618 . . 3 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶)
241, 2, 3, 4, 5, 6, 8, 14, 9, 23cantnflt 8513 . 2 (𝜑 → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴𝑜 𝐶))
257, 24eqeltrd 2698 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴𝑜 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555  c0 3891   E cep 4983   We wwe 5032  dom cdm 5074  cima 5077  Oncon0 5682  suc csuc 5684  ontowfo 5845  1-1-ontowf1o 5846  cfv 5847   Isom wiso 5848  (class class class)co 6604  cmpt2 6606  ωcom 7012   supp csupp 7240  seq𝜔cseqom 7487   +𝑜 coa 7502   ·𝑜 comu 7503  𝑜 coe 7504  OrdIsocoi 8358   CNF ccnf 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-seqom 7488  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-oexp 7511  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-cnf 8503
This theorem is referenced by:  cantnff  8515  cantnflem1d  8529  cnfcom3lem  8544
  Copyright terms: Public domain W3C validator