MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   GIF version

Theorem cantnfp1lem2 8520
Description: Lemma for cantnfp1 8522. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
Assertion
Ref Expression
cantnfp1lem2 (𝜑 → dom 𝑂 = suc dom 𝑂)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hints:   𝐹(𝑡)   𝑂(𝑡)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7 (𝜑𝑋𝐵)
2 cantnfp1.y . . . . . . . . 9 (𝜑𝑌𝐴)
3 iftrue 4064 . . . . . . . . . 10 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4 cantnfp1.f . . . . . . . . . 10 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
53, 4fvmptg 6237 . . . . . . . . 9 ((𝑋𝐵𝑌𝐴) → (𝐹𝑋) = 𝑌)
61, 2, 5syl2anc 692 . . . . . . . 8 (𝜑 → (𝐹𝑋) = 𝑌)
7 cantnfp1.e . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
8 cantnfs.a . . . . . . . . . . 11 (𝜑𝐴 ∈ On)
9 onelon 5707 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
108, 2, 9syl2anc 692 . . . . . . . . . 10 (𝜑𝑌 ∈ On)
11 on0eln0 5739 . . . . . . . . . 10 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
137, 12mpbid 222 . . . . . . . 8 (𝜑𝑌 ≠ ∅)
146, 13eqnetrd 2857 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ ∅)
152adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑌𝐴)
16 cantnfp1.g . . . . . . . . . . . . . 14 (𝜑𝐺𝑆)
17 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
18 cantnfs.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ On)
1917, 8, 18cantnfs 8507 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
2016, 19mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
2120simpld 475 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
2221ffvelrnda 6315 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
2315, 22ifcld 4103 . . . . . . . . . 10 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
2423, 4fmptd 6340 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
25 ffn 6002 . . . . . . . . 9 (𝐹:𝐵𝐴𝐹 Fn 𝐵)
2624, 25syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝐵)
27 0ex 4750 . . . . . . . . 9 ∅ ∈ V
2827a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
29 elsuppfn 7248 . . . . . . . 8 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
3026, 18, 28, 29syl3anc 1323 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
311, 14, 30mpbir2and 956 . . . . . 6 (𝜑𝑋 ∈ (𝐹 supp ∅))
32 n0i 3896 . . . . . 6 (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) = ∅)
3331, 32syl 17 . . . . 5 (𝜑 → ¬ (𝐹 supp ∅) = ∅)
34 suppssdm 7253 . . . . . . . . 9 (𝐹 supp ∅) ⊆ dom 𝐹
354, 23dmmptd 5981 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐵)
3634, 35syl5sseq 3632 . . . . . . . 8 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
3718, 36ssexd 4765 . . . . . . 7 (𝜑 → (𝐹 supp ∅) ∈ V)
38 cantnfp1.o . . . . . . . . 9 𝑂 = OrdIso( E , (𝐹 supp ∅))
39 cantnfp1.s . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
4017, 8, 18, 16, 1, 2, 39, 4cantnfp1lem1 8519 . . . . . . . . 9 (𝜑𝐹𝑆)
4117, 8, 18, 38, 40cantnfcl 8508 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
4241simpld 475 . . . . . . 7 (𝜑 → E We (𝐹 supp ∅))
4338oien 8387 . . . . . . 7 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝑂 ≈ (𝐹 supp ∅))
4437, 42, 43syl2anc 692 . . . . . 6 (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅))
45 breq1 4616 . . . . . . 7 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ ∅ ≈ (𝐹 supp ∅)))
46 ensymb 7948 . . . . . . . 8 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) ≈ ∅)
47 en0 7963 . . . . . . . 8 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
4846, 47bitri 264 . . . . . . 7 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅)
4945, 48syl6bb 276 . . . . . 6 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅))
5044, 49syl5ibcom 235 . . . . 5 (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅))
5133, 50mtod 189 . . . 4 (𝜑 → ¬ dom 𝑂 = ∅)
5241simprd 479 . . . . 5 (𝜑 → dom 𝑂 ∈ ω)
53 nnlim 7025 . . . . 5 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
5452, 53syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝑂)
55 ioran 511 . . . 4 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
5651, 54, 55sylanbrc 697 . . 3 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
57 nnord 7020 . . . 4 (dom 𝑂 ∈ ω → Ord dom 𝑂)
58 unizlim 5803 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
5952, 57, 583syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
6056, 59mtbird 315 . 2 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
61 orduniorsuc 6977 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
6252, 57, 613syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
6362ord 392 . 2 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
6460, 63mpd 15 1 (𝜑 → dom 𝑂 = suc dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  wss 3555  c0 3891  ifcif 4058   cuni 4402   class class class wbr 4613  cmpt 4673   E cep 4983   We wwe 5032  dom cdm 5074  Ord word 5681  Oncon0 5682  Lim wlim 5683  suc csuc 5684   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  ωcom 7012   supp csupp 7240  cen 7896   finSupp cfsupp 8219  OrdIsocoi 8358   CNF ccnf 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-seqom 7488  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-cnf 8503
This theorem is referenced by:  cantnfp1lem3  8521
  Copyright terms: Public domain W3C validator