MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfsuc Structured version   Visualization version   GIF version

Theorem cantnfsuc 9132
Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfsuc ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfsuc
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfval.h . . . 4 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
21seqomsuc 8092 . . 3 (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
32adantl 484 . 2 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
4 elex 3512 . . . 4 (𝐾 ∈ ω → 𝐾 ∈ V)
54adantl 484 . . 3 ((𝜑𝐾 ∈ ω) → 𝐾 ∈ V)
6 fvex 6682 . . 3 (𝐻𝐾) ∈ V
7 simpl 485 . . . . . . . 8 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑢 = 𝐾)
87fveq2d 6673 . . . . . . 7 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐺𝑢) = (𝐺𝐾))
98oveq2d 7171 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐴o (𝐺𝑢)) = (𝐴o (𝐺𝐾)))
108fveq2d 6673 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐾)))
119, 10oveq12d 7173 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) = ((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))))
12 simpr 487 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑣 = (𝐻𝐾))
1311, 12oveq12d 7173 . . . 4 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
14 fveq2 6669 . . . . . . . 8 (𝑘 = 𝑢 → (𝐺𝑘) = (𝐺𝑢))
1514oveq2d 7171 . . . . . . 7 (𝑘 = 𝑢 → (𝐴o (𝐺𝑘)) = (𝐴o (𝐺𝑢)))
1614fveq2d 6673 . . . . . . 7 (𝑘 = 𝑢 → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
1715, 16oveq12d 7173 . . . . . 6 (𝑘 = 𝑢 → ((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) = ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
1817oveq1d 7170 . . . . 5 (𝑘 = 𝑢 → (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧))
19 oveq2 7163 . . . . 5 (𝑧 = 𝑣 → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
2018, 19cbvmpov 7248 . . . 4 (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
21 ovex 7188 . . . 4 (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)) ∈ V
2213, 20, 21ovmpoa 7304 . . 3 ((𝐾 ∈ V ∧ (𝐻𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
235, 6, 22sylancl 588 . 2 ((𝜑𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
243, 23eqtrd 2856 1 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290   E cep 5463  dom cdm 5554  Oncon0 6190  suc csuc 6192  cfv 6354  (class class class)co 7155  cmpo 7157  ωcom 7579   supp csupp 7829  seqωcseqom 8082   +o coa 8098   ·o comu 8099  o coe 8100  OrdIsocoi 8972   CNF ccnf 9123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-seqom 8083
This theorem is referenced by:  cantnfle  9133  cantnflt  9134  cantnfp1lem3  9142  cantnflem1d  9150  cantnflem1  9151  cnfcomlem  9161
  Copyright terms: Public domain W3C validator