MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval2 Structured version   Visualization version   GIF version

Theorem cantnfval2 8518
Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
Assertion
Ref Expression
cantnfval2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfcl.g . . 3 𝐺 = OrdIso( E , (𝐹 supp ∅))
5 cantnfcl.f . . 3 (𝜑𝐹𝑆)
6 cantnfval.h . . 3 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 8517 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
8 ssid 3608 . . 3 dom 𝐺 ⊆ dom 𝐺
91, 2, 3, 4, 5cantnfcl 8516 . . . . 5 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simprd 479 . . . 4 (𝜑 → dom 𝐺 ∈ ω)
11 sseq1 3610 . . . . . . 7 (𝑢 = ∅ → (𝑢 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
12 fveq2 6153 . . . . . . . . 9 (𝑢 = ∅ → (𝐻𝑢) = (𝐻‘∅))
13 0ex 4755 . . . . . . . . . 10 ∅ ∈ V
146seqom0g 7503 . . . . . . . . . 10 (∅ ∈ V → (𝐻‘∅) = ∅)
1513, 14ax-mp 5 . . . . . . . . 9 (𝐻‘∅) = ∅
1612, 15syl6eq 2671 . . . . . . . 8 (𝑢 = ∅ → (𝐻𝑢) = ∅)
17 fveq2 6153 . . . . . . . . 9 (𝑢 = ∅ → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘∅))
18 eqid 2621 . . . . . . . . . . 11 seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
1918seqom0g 7503 . . . . . . . . . 10 (∅ ∈ V → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅)
2013, 19ax-mp 5 . . . . . . . . 9 (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅
2117, 20syl6eq 2671 . . . . . . . 8 (𝑢 = ∅ → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = ∅)
2216, 21eqeq12d 2636 . . . . . . 7 (𝑢 = ∅ → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ ∅ = ∅))
2311, 22imbi12d 334 . . . . . 6 (𝑢 = ∅ → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (∅ ⊆ dom 𝐺 → ∅ = ∅)))
2423imbi2d 330 . . . . 5 (𝑢 = ∅ → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))))
25 sseq1 3610 . . . . . . 7 (𝑢 = 𝑣 → (𝑢 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺))
26 fveq2 6153 . . . . . . . 8 (𝑢 = 𝑣 → (𝐻𝑢) = (𝐻𝑣))
27 fveq2 6153 . . . . . . . 8 (𝑢 = 𝑣 → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))
2826, 27eqeq12d 2636 . . . . . . 7 (𝑢 = 𝑣 → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
2925, 28imbi12d 334 . . . . . 6 (𝑢 = 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))))
3029imbi2d 330 . . . . 5 (𝑢 = 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))))
31 sseq1 3610 . . . . . . 7 (𝑢 = suc 𝑣 → (𝑢 ⊆ dom 𝐺 ↔ suc 𝑣 ⊆ dom 𝐺))
32 fveq2 6153 . . . . . . . 8 (𝑢 = suc 𝑣 → (𝐻𝑢) = (𝐻‘suc 𝑣))
33 fveq2 6153 . . . . . . . 8 (𝑢 = suc 𝑣 → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))
3432, 33eqeq12d 2636 . . . . . . 7 (𝑢 = suc 𝑣 → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))
3531, 34imbi12d 334 . . . . . 6 (𝑢 = suc 𝑣 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
3635imbi2d 330 . . . . 5 (𝑢 = suc 𝑣 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))))
37 sseq1 3610 . . . . . . 7 (𝑢 = dom 𝐺 → (𝑢 ⊆ dom 𝐺 ↔ dom 𝐺 ⊆ dom 𝐺))
38 fveq2 6153 . . . . . . . 8 (𝑢 = dom 𝐺 → (𝐻𝑢) = (𝐻‘dom 𝐺))
39 fveq2 6153 . . . . . . . 8 (𝑢 = dom 𝐺 → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
4038, 39eqeq12d 2636 . . . . . . 7 (𝑢 = dom 𝐺 → ((𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢) ↔ (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺)))
4137, 40imbi12d 334 . . . . . 6 (𝑢 = dom 𝐺 → ((𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢)) ↔ (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))))
4241imbi2d 330 . . . . 5 (𝑢 = dom 𝐺 → ((𝜑 → (𝑢 ⊆ dom 𝐺 → (𝐻𝑢) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑢))) ↔ (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺)))))
43 eqid 2621 . . . . . 6 ∅ = ∅
44432a1i 12 . . . . 5 (𝜑 → (∅ ⊆ dom 𝐺 → ∅ = ∅))
45 sssucid 5766 . . . . . . . . . 10 𝑣 ⊆ suc 𝑣
46 sstr 3595 . . . . . . . . . 10 ((𝑣 ⊆ suc 𝑣 ∧ suc 𝑣 ⊆ dom 𝐺) → 𝑣 ⊆ dom 𝐺)
4745, 46mpan 705 . . . . . . . . 9 (suc 𝑣 ⊆ dom 𝐺𝑣 ⊆ dom 𝐺)
4847imim1i 63 . . . . . . . 8 ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
49 oveq2 6618 . . . . . . . . . . 11 ((𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) → (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
506seqomsuc 7504 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)))
5150ad2antrl 763 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝐻‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)))
5218seqomsuc 7504 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
5352ad2antrl 763 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
54 ssv 3609 . . . . . . . . . . . . . . . 16 dom 𝐺 ⊆ V
55 ssv 3609 . . . . . . . . . . . . . . . 16 On ⊆ V
56 resmpt2 6718 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ⊆ V ∧ On ⊆ V) → ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)))
5754, 55, 56mp2an 707 . . . . . . . . . . . . . . 15 ((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On)) = (𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
5857oveqi 6623 . . . . . . . . . . . . . 14 (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))
59 simprr 795 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → suc 𝑣 ⊆ dom 𝐺)
60 vex 3192 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
6160sucid 5768 . . . . . . . . . . . . . . . . 17 𝑣 ∈ suc 𝑣
6261a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ suc 𝑣)
6359, 62sseldd 3588 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → 𝑣 ∈ dom 𝐺)
6418cantnfvalf 8514 . . . . . . . . . . . . . . . . 17 seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅):ω⟶On
6564ffvelrni 6319 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) ∈ On)
6665ad2antrl 763 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) ∈ On)
67 ovres 6760 . . . . . . . . . . . . . . 15 ((𝑣 ∈ dom 𝐺 ∧ (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) ∈ On) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
6863, 66, 67syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ↾ (dom 𝐺 × On))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
6958, 68syl5eqr 2669 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (𝑣(𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
7053, 69eqtrd 2655 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)))
7151, 70eqeq12d 2636 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣) ↔ (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(𝐻𝑣)) = (𝑣(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))(seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))))
7249, 71syl5ibr 236 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺)) → ((𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))
7372expr 642 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (suc 𝑣 ⊆ dom 𝐺 → ((𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣) → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
7473a2d 29 . . . . . . . 8 ((𝜑𝑣 ∈ ω) → ((suc 𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
7548, 74syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ ω) → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣))))
7675expcom 451 . . . . . 6 (𝑣 ∈ ω → (𝜑 → ((𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣)) → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))))
7776a2d 29 . . . . 5 (𝑣 ∈ ω → ((𝜑 → (𝑣 ⊆ dom 𝐺 → (𝐻𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘𝑣))) → (𝜑 → (suc 𝑣 ⊆ dom 𝐺 → (𝐻‘suc 𝑣) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘suc 𝑣)))))
7824, 30, 36, 42, 44, 77finds 7046 . . . 4 (dom 𝐺 ∈ ω → (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))))
7910, 78mpcom 38 . . 3 (𝜑 → (dom 𝐺 ⊆ dom 𝐺 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺)))
808, 79mpi 20 . 2 (𝜑 → (𝐻‘dom 𝐺) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
817, 80eqtrd 2655 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3189  wss 3559  c0 3896   E cep 4988   We wwe 5037   × cxp 5077  dom cdm 5079  cres 5081  Oncon0 5687  suc csuc 5689  cfv 5852  (class class class)co 6610  cmpt2 6612  ωcom 7019   supp csupp 7247  seq𝜔cseqom 7494   +𝑜 coa 7509   ·𝑜 comu 7510  𝑜 coe 7511  OrdIsocoi 8366   CNF ccnf 8510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-seqom 7495  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-oi 8367  df-cnf 8511
This theorem is referenced by:  cantnfres  8526
  Copyright terms: Public domain W3C validator