MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalf Structured version   Visualization version   GIF version

Theorem cantnfvalf 9122
Description: Lemma for cantnf 9150. The function appearing in cantnfval 9125 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
cantnfvalf.f 𝐹 = seqω((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)), ∅)
Assertion
Ref Expression
cantnfvalf 𝐹:ω⟶On
Distinct variable groups:   𝑧,𝑘,𝐴   𝐵,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑘)   𝐷(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem cantnfvalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalf.f . . 3 𝐹 = seqω((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)), ∅)
21fnseqom 8085 . 2 𝐹 Fn ω
3 nn0suc 7600 . . . 4 (𝑥 ∈ ω → (𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦))
4 fveq2 6664 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
5 0ex 5203 . . . . . . . 8 ∅ ∈ V
61seqom0g 8086 . . . . . . . 8 (∅ ∈ V → (𝐹‘∅) = ∅)
75, 6ax-mp 5 . . . . . . 7 (𝐹‘∅) = ∅
84, 7syl6eq 2872 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
9 0elon 6238 . . . . . 6 ∅ ∈ On
108, 9eqeltrdi 2921 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) ∈ On)
111seqomsuc 8087 . . . . . . . . 9 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))(𝐹𝑦)))
12 df-ov 7153 . . . . . . . . 9 (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))(𝐹𝑦)) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩)
1311, 12syl6eq 2872 . . . . . . . 8 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩))
14 df-ov 7153 . . . . . . . . . . . 12 (𝐶 +o 𝐷) = ( +o ‘⟨𝐶, 𝐷⟩)
15 fnoa 8127 . . . . . . . . . . . . . 14 +o Fn (On × On)
16 oacl 8154 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 +o 𝑦) ∈ On)
1716rgen2 3203 . . . . . . . . . . . . . 14 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On
18 ffnov 7272 . . . . . . . . . . . . . 14 ( +o :(On × On)⟶On ↔ ( +o Fn (On × On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On))
1915, 17, 18mpbir2an 709 . . . . . . . . . . . . 13 +o :(On × On)⟶On
2019, 9f0cli 6858 . . . . . . . . . . . 12 ( +o ‘⟨𝐶, 𝐷⟩) ∈ On
2114, 20eqeltri 2909 . . . . . . . . . . 11 (𝐶 +o 𝐷) ∈ On
2221rgen2w 3151 . . . . . . . . . 10 𝑘𝐴𝑧𝐵 (𝐶 +o 𝐷) ∈ On
23 eqid 2821 . . . . . . . . . . 11 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)) = (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))
2423fmpo 7760 . . . . . . . . . 10 (∀𝑘𝐴𝑧𝐵 (𝐶 +o 𝐷) ∈ On ↔ (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On)
2522, 24mpbi 232 . . . . . . . . 9 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On
2625, 9f0cli 6858 . . . . . . . 8 ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩) ∈ On
2713, 26eqeltrdi 2921 . . . . . . 7 (𝑦 ∈ ω → (𝐹‘suc 𝑦) ∈ On)
28 fveq2 6664 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝐹𝑥) = (𝐹‘suc 𝑦))
2928eleq1d 2897 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝐹𝑥) ∈ On ↔ (𝐹‘suc 𝑦) ∈ On))
3027, 29syl5ibrcom 249 . . . . . 6 (𝑦 ∈ ω → (𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On))
3130rexlimiv 3280 . . . . 5 (∃𝑦 ∈ ω 𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On)
3210, 31jaoi 853 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦) → (𝐹𝑥) ∈ On)
333, 32syl 17 . . 3 (𝑥 ∈ ω → (𝐹𝑥) ∈ On)
3433rgen 3148 . 2 𝑥 ∈ ω (𝐹𝑥) ∈ On
35 ffnfv 6876 . 2 (𝐹:ω⟶On ↔ (𝐹 Fn ω ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ On))
362, 34, 35mpbir2an 709 1 𝐹:ω⟶On
Colors of variables: wff setvar class
Syntax hints:  wo 843   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  c0 4290  cop 4566   × cxp 5547  Oncon0 6185  suc csuc 6187   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  ωcom 7574  seqωcseqom 8077   +o coa 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-oadd 8100
This theorem is referenced by:  cantnfval2  9126  cantnfle  9128  cantnflt  9129  cantnflem1d  9145  cantnflem1  9146  cnfcomlem  9156
  Copyright terms: Public domain W3C validator