MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov32 Structured version   Visualization version   GIF version

Theorem caov32 6826
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caov32 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov32
StepHypRef Expression
1 caov.2 . . . 4 𝐵 ∈ V
2 caov.3 . . . 4 𝐶 ∈ V
3 caov.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
41, 2, 3caovcom 6796 . . 3 (𝐵𝐹𝐶) = (𝐶𝐹𝐵)
54oveq2i 6626 . 2 (𝐴𝐹(𝐵𝐹𝐶)) = (𝐴𝐹(𝐶𝐹𝐵))
6 caov.1 . . 3 𝐴 ∈ V
7 caov.ass . . 3 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
86, 1, 2, 7caovass 6799 . 2 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
96, 2, 1, 7caovass 6799 . 2 ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵))
105, 8, 93eqtr4i 2653 1 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  Vcvv 3190  (class class class)co 6615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-iota 5820  df-fv 5865  df-ov 6618
This theorem is referenced by:  caov31  6828  addassnq  9740  ltexprlem7  9824  mulcmpblnrlem  9851  recexsrlem  9884  mulgt0sr  9886
  Copyright terms: Public domain W3C validator