MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov411d Structured version   Visualization version   GIF version

Theorem caov411d 7375
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovd.4 (𝜑𝐷𝑆)
caovd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caov411d (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov411d
StepHypRef Expression
1 caovd.2 . . 3 (𝜑𝐵𝑆)
2 caovd.1 . . 3 (𝜑𝐴𝑆)
3 caovd.3 . . 3 (𝜑𝐶𝑆)
4 caovd.com . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
5 caovd.ass . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
6 caovd.4 . . 3 (𝜑𝐷𝑆)
7 caovd.cl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
81, 2, 3, 4, 5, 6, 7caov4d 7374 . 2 (𝜑 → ((𝐵𝐹𝐴)𝐹(𝐶𝐹𝐷)) = ((𝐵𝐹𝐶)𝐹(𝐴𝐹𝐷)))
94, 1, 2caovcomd 7346 . . 3 (𝜑 → (𝐵𝐹𝐴) = (𝐴𝐹𝐵))
109oveq1d 7173 . 2 (𝜑 → ((𝐵𝐹𝐴)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)))
114, 1, 3caovcomd 7346 . . 3 (𝜑 → (𝐵𝐹𝐶) = (𝐶𝐹𝐵))
1211oveq1d 7173 . 2 (𝜑 → ((𝐵𝐹𝐶)𝐹(𝐴𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
138, 10, 123eqtr3d 2866 1 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  (class class class)co 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator