MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcang Structured version   Visualization version   GIF version

Theorem caovcang 6710
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypothesis
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caovcang ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcang
StepHypRef Expression
1 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
21ralrimivvva 2954 . 2 (𝜑 → ∀𝑥𝑇𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
3 oveq1 6534 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
4 oveq1 6534 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑧) = (𝐴𝐹𝑧))
53, 4eqeq12d 2624 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝑧)))
65bibi1d 331 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ 𝑦 = 𝑧)))
7 oveq2 6535 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
87eqeq1d 2611 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝑧)))
9 eqeq1 2613 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
108, 9bibi12d 333 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝑧) ↔ 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ 𝐵 = 𝑧)))
11 oveq2 6535 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐹𝑧) = (𝐴𝐹𝐶))
1211eqeq2d 2619 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶)))
13 eqeq2 2620 . . . 4 (𝑧 = 𝐶 → (𝐵 = 𝑧𝐵 = 𝐶))
1412, 13bibi12d 333 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵) = (𝐴𝐹𝑧) ↔ 𝐵 = 𝑧) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)))
156, 10, 14rspc3v 3295 . 2 ((𝐴𝑇𝐵𝑆𝐶𝑆) → (∀𝑥𝑇𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)))
162, 15mpan9 484 1 ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  (class class class)co 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530
This theorem is referenced by:  caovcand  6711  caofcan  37340
  Copyright terms: Public domain W3C validator