MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovlem2 Structured version   Visualization version   GIF version

Theorem caovlem2 6823
Description: Lemma used in real number construction. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1 𝐴 ∈ V
caovdir.2 𝐵 ∈ V
caovdir.3 𝐶 ∈ V
caovdir.com (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
caovdir.distr (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
caovdl.4 𝐷 ∈ V
caovdl.5 𝐻 ∈ V
caovdl.ass ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
caovdl2.6 𝑅 ∈ V
caovdl2.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caovdl2.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caovlem2 ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem caovlem2
StepHypRef Expression
1 ovex 6632 . . 3 (𝐴𝐺(𝐶𝐺𝐻)) ∈ V
2 ovex 6632 . . 3 (𝐵𝐺(𝐷𝐺𝐻)) ∈ V
3 ovex 6632 . . 3 (𝐴𝐺(𝐷𝐺𝑅)) ∈ V
4 caovdl2.com . . 3 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
5 caovdl2.ass . . 3 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
6 ovex 6632 . . 3 (𝐵𝐺(𝐶𝐺𝑅)) ∈ V
71, 2, 3, 4, 5, 6caov42 6820 . 2 (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))))
8 caovdir.1 . . . 4 𝐴 ∈ V
9 caovdir.2 . . . 4 𝐵 ∈ V
10 caovdir.3 . . . 4 𝐶 ∈ V
11 caovdir.com . . . 4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
12 caovdir.distr . . . 4 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
13 caovdl.4 . . . 4 𝐷 ∈ V
14 caovdl.5 . . . 4 𝐻 ∈ V
15 caovdl.ass . . . 4 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
168, 9, 10, 11, 12, 13, 14, 15caovdilem 6822 . . 3 (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
17 caovdl2.6 . . . 4 𝑅 ∈ V
188, 9, 13, 11, 12, 10, 17, 15caovdilem 6822 . . 3 (((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅) = ((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))
1916, 18oveq12i 6616 . 2 ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅))))
20 ovex 6632 . . . 4 (𝐶𝐺𝐻) ∈ V
21 ovex 6632 . . . 4 (𝐷𝐺𝑅) ∈ V
228, 20, 21, 12caovdi 6806 . . 3 (𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅))) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))
23 ovex 6632 . . . 4 (𝐶𝐺𝑅) ∈ V
24 ovex 6632 . . . 4 (𝐷𝐺𝐻) ∈ V
259, 23, 24, 12caovdi 6806 . . 3 (𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))) = ((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
2622, 25oveq12i 6616 . 2 ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))))
277, 19, 263eqtr4i 2653 1 ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  Vcvv 3186  (class class class)co 6604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-nul 4749
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-iota 5810  df-fv 5855  df-ov 6607
This theorem is referenced by:  mulasssr  9855
  Copyright terms: Public domain W3C validator