![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version |
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenelss.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenelss.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenelss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caragenelss.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
caragenelss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenelss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | caragenelss.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragenelss.s | . . . . . 6 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 2, 3 | caragenel 41233 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥)))) |
5 | 1, 4 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥))) |
6 | 5 | simpld 477 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
7 | caragenelss.x | . . . . . 6 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | 7 | eqcomi 2769 | . . . . 5 ⊢ ∪ dom 𝑂 = 𝑋 |
9 | 8 | pweqi 4306 | . . . 4 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
11 | 6, 10 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
12 | elpwg 4310 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
14 | 11, 13 | mpbid 222 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∖ cdif 3712 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 dom cdm 5266 ‘cfv 6049 (class class class)co 6814 +𝑒 cxad 12157 OutMeascome 41227 CaraGenccaragen 41229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-caragen 41230 |
This theorem is referenced by: caragenuncllem 41250 caragenuncl 41251 |
Copyright terms: Public domain | W3C validator |