Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncllem2 Structured version   Visualization version   GIF version

Theorem carageniuncllem2 39216
Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncllem2.o (𝜑𝑂 ∈ OutMeas)
carageniuncllem2.s 𝑆 = (CaraGen‘𝑂)
carageniuncllem2.x 𝑋 = dom 𝑂
carageniuncllem2.a (𝜑𝐴𝑋)
carageniuncllem2.re (𝜑 → (𝑂𝐴) ∈ ℝ)
carageniuncllem2.m (𝜑𝑀 ∈ ℤ)
carageniuncllem2.z 𝑍 = (ℤ𝑀)
carageniuncllem2.e (𝜑𝐸:𝑍𝑆)
carageniuncllem2.y (𝜑𝑌 ∈ ℝ+)
carageniuncllem2.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
carageniuncllem2.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
carageniuncllem2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Distinct variable groups:   𝐴,𝑛   𝑖,𝐸,𝑛   𝑛,𝐹   𝑖,𝑀,𝑛   𝑛,𝑂   𝑆,𝑖   𝑛,𝑋   𝑖,𝑍,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑛)   𝐹(𝑖)   𝐺(𝑖,𝑛)   𝑂(𝑖)   𝑋(𝑖)   𝑌(𝑖,𝑛)

Proof of Theorem carageniuncllem2
Dummy variables 𝑘 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncllem2.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 carageniuncllem2.x . . . 4 𝑋 = dom 𝑂
3 carageniuncllem2.a . . . 4 (𝜑𝐴𝑋)
4 carageniuncllem2.re . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ)
5 inss1 3794 . . . . 5 (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴
65a1i 11 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
71, 2, 3, 4, 6omessre 39204 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
8 difssd 3699 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
91, 2, 3, 4, 8omessre 39204 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
10 rexadd 11896 . . 3 (((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
117, 9, 10syl2anc 690 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
12 carageniuncllem2.z . . . . . . . 8 𝑍 = (ℤ𝑀)
13 ssinss1 3802 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
143, 13syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
151, 2unidmex 38045 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ V)
16 ssexg 4727 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
173, 15, 16syl2anc 690 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
18 inex1g 4724 . . . . . . . . . . . . . 14 (𝐴 ∈ V → (𝐴 ∩ (𝐹𝑛)) ∈ V)
1917, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ V)
20 elpwg 4115 . . . . . . . . . . . . 13 ((𝐴 ∩ (𝐹𝑛)) ∈ V → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2214, 21mpbird 245 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
2322adantr 479 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
24 eqid 2609 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2523, 24fmptd 6277 . . . . . . . . 9 (𝜑 → (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
26 fveq2 6088 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
2726ineq2d 3775 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴 ∩ (𝐹𝑘)) = (𝐴 ∩ (𝐹𝑛)))
2827cbvmptv 4672 . . . . . . . . . . 11 (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2928feq1i 5935 . . . . . . . . . 10 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
3029a1i 11 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋))
3125, 30mpbird 245 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋)
32 simpr 475 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
3319adantr 479 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
3428fvmpt2 6185 . . . . . . . . . . . 12 ((𝑛𝑍 ∧ (𝐴 ∩ (𝐹𝑛)) ∈ V) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3532, 33, 34syl2anc 690 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3635iuneq2dv 4472 . . . . . . . . . 10 (𝜑 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
3736fveq2d 6092 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
38 nfv 1829 . . . . . . . . . . . . . . . 16 𝑛𝜑
39 carageniuncllem2.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍𝑆)
40 carageniuncllem2.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
4138, 12, 39, 40iundjiun 39157 . . . . . . . . . . . . . . 15 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑀...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑀...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
4241simplrd 788 . . . . . . . . . . . . . 14 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
4342eqcomd 2615 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
4443ineq2d 3775 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛)))
45 iunin2 4514 . . . . . . . . . . . . . 14 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛))
4645eqcomi 2618 . . . . . . . . . . . . 13 (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))
4746a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4844, 47eqtrd 2643 . . . . . . . . . . 11 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4948fveq2d 6092 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
5049, 7eqeltrrd 2688 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
5137, 50eqeltrd 2687 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) ∈ ℝ)
52 carageniuncllem2.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ+)
531, 2, 12, 31, 51, 52omeiunltfirp 39213 . . . . . . 7 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌))
5437adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
55 elpwinss 38044 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
5655adantr 479 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
57 simpr 475 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
5856, 57sseldd 3568 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
5958adantll 745 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
6019ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
6159, 60, 34syl2anc 690 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
6261fveq2d 6092 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6362sumeq2dv 14227 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6463oveq1d 6542 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
6554, 64breq12d 4590 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) ↔ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6665biimpd 217 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6766reximdva 2999 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6853, 67mpd 15 . . . . . 6 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
69 carageniuncllem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7069adantr 479 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑀 ∈ ℤ)
7155adantl 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧𝑍)
72 elinel2 3761 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
7372adantl 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
7470, 12, 71, 73uzfissfz 38287 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7574adantr 479 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7650ad3antrrr 761 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
77 fzfid 12589 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (𝑀...𝑘) → (𝑀...𝑘) ∈ Fin)
78 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ⊆ (𝑀...𝑘))
79 ssfi 8042 . . . . . . . . . . . . . . . . 17 (((𝑀...𝑘) ∈ Fin ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
8077, 78, 79syl2anc 690 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ∈ Fin)
8180adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
821ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
833ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝐴𝑋)
844ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂𝐴) ∈ ℝ)
85 inss1 3794 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴
8685a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
8782, 2, 83, 84, 86omessre 39204 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8881, 87fsumrecl 14258 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8952rpred 11704 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
9089adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑌 ∈ ℝ)
9188, 90readdcld 9925 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
9291ad4ant14 1284 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
93 fzfid 12589 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀...𝑘) ∈ Fin)
9485a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
951, 2, 3, 4, 94omessre 39204 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9695adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9793, 96fsumrecl 14258 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9897adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9989adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
10098, 99readdcld 9925 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
101100ad2antrr 757 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
102 simplr 787 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
10397adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
104 fzfid 12589 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (𝑀...𝑘) ∈ Fin)
10596adantlr 746 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
106 0xr 9942 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ∈ ℝ*)
108 pnfxr 11781 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (𝑀...𝑘)) → +∞ ∈ ℝ*)
1101, 2, 14omecl 39197 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
111110adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
112 iccgelb 12057 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
113107, 109, 111, 112syl3anc 1317 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
114113adantlr 746 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
115 simpr 475 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ⊆ (𝑀...𝑘))
116104, 105, 114, 115fsumless 14315 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ≤ Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))))
11788, 103, 90, 116leadd1dd 10490 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
118117ad4ant14 1284 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
11976, 92, 101, 102, 118ltletrd 10048 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
120119ex 448 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑧 ⊆ (𝑀...𝑘) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
121120reximdv 2998 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12275, 121mpd 15 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
123122ex 448 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
124123rexlimdva 3012 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12568, 124mpd 15 . . . . 5 (𝜑 → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
12649ad2antrr 757 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
127 simpr 475 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
128126, 127eqbrtrd 4599 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
129128ex 448 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
130129reximdva 2999 . . . . 5 (𝜑 → (∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
131125, 130mpd 15 . . . 4 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
132 simpr 475 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
1331adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑂 ∈ OutMeas)
134 carageniuncllem2.s . . . . . . . . . 10 𝑆 = (CaraGen‘𝑂)
1353adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐴𝑋)
1364adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑂𝐴) ∈ ℝ)
13739adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐸:𝑍𝑆)
138 carageniuncllem2.g . . . . . . . . . 10 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
139 simpr 475 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘𝑍)
140133, 134, 2, 135, 136, 12, 137, 138, 40, 139carageniuncllem1 39215 . . . . . . . . 9 ((𝜑𝑘𝑍) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) = (𝑂‘(𝐴 ∩ (𝐺𝑘))))
141140oveq1d 6542 . . . . . . . 8 ((𝜑𝑘𝑍) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
142141adantr 479 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
143132, 142breqtrd 4603 . . . . . 6 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
144143ex 448 . . . . 5 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
145144reximdva 2999 . . . 4 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
146131, 145mpd 15 . . 3 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
14773ad2ant1 1074 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
14893ad2ant1 1074 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
149 inss1 3794 . . . . . . . . . . 11 (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴
150149a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴)
151133, 2, 135, 136, 150omessre 39204 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ)
15289adantr 479 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℝ)
153151, 152readdcld 9925 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
1541533adant3 1073 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
155 difssd 3699 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝐴)
156133, 2, 135, 136, 155omessre 39204 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
1571563adant3 1073 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
158 simp3 1055 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
159147, 154, 158ltled 10036 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
160135ssdifssd 3709 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝑋)
161 oveq2 6535 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
162161iuneq1d 4475 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
163 ovex 6555 . . . . . . . . . . . . . . 15 (𝑀...𝑘) ∈ V
164 fvex 6098 . . . . . . . . . . . . . . 15 (𝐸𝑖) ∈ V
165163, 164iunex 7016 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ V
166162, 138, 165fvmpt 6176 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
167 fveq2 6088 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝐸𝑖) = (𝐸𝑛))
168167cbviunv 4489 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛)
169168a1i 11 . . . . . . . . . . . . 13 (𝑘𝑍 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
170166, 169eqtrd 2643 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺𝑘) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
171 elfzuz 12164 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ (ℤ𝑀))
17212eqcomi 2618 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) = 𝑍
173172a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → (ℤ𝑀) = 𝑍)
174171, 173eleqtrd 2689 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...𝑘) → 𝑖𝑍)
175174ssriv 3571 . . . . . . . . . . . . . 14 (𝑀...𝑘) ⊆ 𝑍
176 iunss1 4462 . . . . . . . . . . . . . 14 ((𝑀...𝑘) ⊆ 𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
177175, 176ax-mp 5 . . . . . . . . . . . . 13 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛)
178177a1i 11 . . . . . . . . . . . 12 (𝑘𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
179170, 178eqsstrd 3601 . . . . . . . . . . 11 (𝑘𝑍 → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
180179adantl 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
181180sscond 3708 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ (𝐴 ∖ (𝐺𝑘)))
182133, 2, 160, 181omessle 39192 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
1831823adant3 1073 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
184147, 148, 154, 157, 159, 183le2addd 10495 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
185151recnd 9924 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℂ)
18689recnd 9924 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
187186adantr 479 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℂ)
188156recnd 9924 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℂ)
189185, 187, 188add32d 10114 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌))
190 rexadd 11896 . . . . . . . . . . . 12 (((𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
191151, 156, 190syl2anc 690 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
192191eqcomd 2615 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
193138a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)))
194162adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑛 = 𝑘) → 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
195 nfv 1829 . . . . . . . . . . . . . . 15 𝑖𝜑
19639adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝐸:𝑍𝑆)
197174adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑍)
198196, 197ffvelrnd 6253 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀...𝑘)) → (𝐸𝑖) ∈ 𝑆)
199195, 1, 134, 93, 198caragenfiiuncl 39209 . . . . . . . . . . . . . 14 (𝜑 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
200199adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
201193, 194, 139, 200fvmptd 6182 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
202201, 200eqeltrd 2687 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝑆)
203133, 134, 2, 202, 135caragensplit 39194 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
204192, 203eqtrd 2643 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
205204oveq1d 6542 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌) = ((𝑂𝐴) + 𝑌))
206189, 205eqtrd 2643 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
2072063adant3 1073 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
208184, 207breqtrd 4603 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
2092083exp 1255 . . . 4 (𝜑 → (𝑘𝑍 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))))
210209rexlimdv 3011 . . 3 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌)))
211146, 210mpd 15 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
21211, 211eqbrtrd 4599 1 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896  Vcvv 3172  cdif 3536  cin 3538  wss 3539  𝒫 cpw 4107   cuni 4366   ciun 4449  Disj wdisj 4547   class class class wbr 4577  cmpt 4637  dom cdm 5028  wf 5786  cfv 5790  (class class class)co 6527  Fincfn 7818  cc 9790  cr 9791  0cc0 9792   + caddc 9795  +∞cpnf 9927  *cxr 9929   < clt 9930  cle 9931  cz 11210  cuz 11519  +crp 11664   +𝑒 cxad 11776  [,]cicc 12005  ...cfz 12152  ..^cfzo 12289  Σcsu 14210  OutMeascome 39183  CaraGenccaragen 39185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-ac2 9145  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-oi 8275  df-card 8625  df-acn 8628  df-ac 8799  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-xadd 11779  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-sumge0 39060  df-ome 39184  df-caragen 39186
This theorem is referenced by:  carageniuncl  39217
  Copyright terms: Public domain W3C validator