Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncl Structured version   Visualization version   GIF version

Theorem caragenuncl 40021
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncl.1 (𝜑𝑂 ∈ OutMeas)
caragenuncl.2 𝑆 = (CaraGen‘𝑂)
caragenuncl.3 (𝜑𝐸𝑆)
caragenuncl.4 (𝜑𝐹𝑆)
Assertion
Ref Expression
caragenuncl (𝜑 → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem caragenuncl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragenuncl.1 . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2626 . 2 dom 𝑂 = dom 𝑂
3 caragenuncl.2 . 2 𝑆 = (CaraGen‘𝑂)
4 caragenuncl.3 . . . . 5 (𝜑𝐸𝑆)
51, 3, 4, 2caragenelss 40009 . . . 4 (𝜑𝐸 dom 𝑂)
6 caragenuncl.4 . . . . 5 (𝜑𝐹𝑆)
71, 3, 6, 2caragenelss 40009 . . . 4 (𝜑𝐹 dom 𝑂)
85, 7unssd 3772 . . 3 (𝜑 → (𝐸𝐹) ⊆ dom 𝑂)
91, 2unidmex 38688 . . . . 5 (𝜑 dom 𝑂 ∈ V)
10 ssexg 4769 . . . . 5 (((𝐸𝐹) ⊆ dom 𝑂 dom 𝑂 ∈ V) → (𝐸𝐹) ∈ V)
118, 9, 10syl2anc 692 . . . 4 (𝜑 → (𝐸𝐹) ∈ V)
12 elpwg 4143 . . . 4 ((𝐸𝐹) ∈ V → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
1311, 12syl 17 . . 3 (𝜑 → ((𝐸𝐹) ∈ 𝒫 dom 𝑂 ↔ (𝐸𝐹) ⊆ dom 𝑂))
148, 13mpbird 247 . 2 (𝜑 → (𝐸𝐹) ∈ 𝒫 dom 𝑂)
151adantr 481 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
164adantr 481 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐸𝑆)
176adantr 481 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝐹𝑆)
18 elpwi 4145 . . . 4 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1918adantl 482 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
2015, 3, 16, 17, 2, 19caragenuncllem 40020 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝑎 ∖ (𝐸𝐹)))) = (𝑂𝑎))
211, 2, 3, 14, 20carageneld 40010 1 (𝜑 → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  Vcvv 3191  cun 3558  wss 3560  𝒫 cpw 4135   cuni 4407  dom cdm 5079  cfv 5850  OutMeascome 39997  CaraGenccaragen 39999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-addass 9946  ax-i2m1 9949  ax-1ne0 9950  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-xadd 11891  df-icc 12121  df-ome 39998  df-caragen 40000
This theorem is referenced by:  caragenfiiuncl  40023
  Copyright terms: Public domain W3C validator