Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem2 Structured version   Visualization version   GIF version

Theorem caratheodorylem2 39217
Description: Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem2.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem2.x 𝑋 = dom 𝑂
caratheodorylem2.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem2.e (𝜑𝐸:ℕ⟶𝑆)
caratheodorylem2.5 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
caratheodorylem2.g 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
Assertion
Ref Expression
caratheodorylem2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑘,𝐸,𝑛   𝑛,𝐺   𝑘,𝑂,𝑛   𝑛,𝑋   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑆(𝑘,𝑛)   𝐺(𝑘)   𝑋(𝑘)

Proof of Theorem caratheodorylem2
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodorylem2.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 caratheodorylem2.x . . 3 𝑋 = dom 𝑂
3 caratheodorylem2.s . . . . . . . . . . 11 𝑆 = (CaraGen‘𝑂)
43caragenss 39194 . . . . . . . . . 10 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ dom 𝑂)
65adantr 479 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 ⊆ dom 𝑂)
7 caratheodorylem2.e . . . . . . . . 9 (𝜑𝐸:ℕ⟶𝑆)
87ffvelrnda 6248 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ 𝑆)
96, 8sseldd 3564 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom 𝑂)
10 elssuni 4393 . . . . . . 7 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
119, 10syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ dom 𝑂)
1211, 2syl6sseqr 3610 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑋)
1312ralrimiva 2944 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
14 iunss 4487 . . . 4 ( 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
1513, 14sylibr 222 . . 3 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
161, 2, 15omexrcl 39197 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17 nnex 10869 . . . 4 ℕ ∈ V
1817a1i 11 . . 3 (𝜑 → ℕ ∈ V)
191adantr 479 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ OutMeas)
2019, 2, 12omecl 39193 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
21 eqid 2605 . . . 4 (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))
2220, 21fmptd 6273 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))):ℕ⟶(0[,]+∞))
2318, 22sge0xrcl 39078 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
24 nfv 1828 . . 3 𝑛𝜑
25 nfcv 2746 . . 3 𝑛𝐸
26 nnuz 11551 . . 3 ℕ = (ℤ‘1)
271, 2, 3caragensspw 39199 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑋)
287, 27fssd 5952 . . 3 (𝜑𝐸:ℕ⟶𝒫 𝑋)
2924, 25, 1, 2, 26, 28omeiunle 39207 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
30 elpwinss 38040 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ⊆ ℕ)
3130resmptd 5354 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → ((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))))
3231fveq2d 6088 . . . . . 6 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
3332adantl 480 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) = (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))))
34 1zzd 11237 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 1 ∈ ℤ)
3530adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ⊆ ℕ)
36 elinel2 3757 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ ∩ Fin) → 𝑥 ∈ Fin)
3736adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
3834, 26, 35, 37uzfissfz 38283 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘))
39 vex 3171 . . . . . . . . . . . . 13 𝑥 ∈ V
4039a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → 𝑥 ∈ V)
411ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑂 ∈ OutMeas)
4228ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝐸:ℕ⟶𝒫 𝑋)
43 fz1ssnn 12194 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
44 ssel2 3558 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ (1...𝑘))
4543, 44sseldi 3561 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (1...𝑘) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4645adantll 745 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → 𝑛 ∈ ℕ)
4742, 46ffvelrnd 6249 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ∈ 𝒫 𝑋)
48 elpwi 4112 . . . . . . . . . . . . . . 15 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
4947, 48syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝐸𝑛) ⊆ 𝑋)
5041, 2, 49omecl 39193 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (1...𝑘)) ∧ 𝑛𝑥) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
51 eqid 2605 . . . . . . . . . . . . 13 (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))
5250, 51fmptd 6273 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (1...𝑘)) → (𝑛𝑥 ↦ (𝑂‘(𝐸𝑛))):𝑥⟶(0[,]+∞))
5340, 52sge0xrcl 39078 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
54533adant2 1072 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
55 ovex 6551 . . . . . . . . . . . . 13 (1...𝑘) ∈ V
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑘) ∈ V)
57 elfznn 12192 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
5857, 20sylan2 489 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
59 eqid 2605 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))
6058, 59fmptd 6273 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛))):(1...𝑘)⟶(0[,]+∞))
6156, 60sge0xrcl 39078 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
62613ad2ant1 1074 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
63163ad2ant1 1074 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
6455a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (1...𝑘) ∈ V)
65 simpl1 1056 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
6657adantl 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6765, 66, 20syl2anc 690 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) ∧ 𝑛 ∈ (1...𝑘)) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
68 simp3 1055 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → 𝑥 ⊆ (1...𝑘))
6964, 67, 68sge0lessmpt 39092 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
701adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑂 ∈ OutMeas)
717adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐸:ℕ⟶𝑆)
72 caratheodorylem2.5 . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
7372adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
74 caratheodorylem2.g . . . . . . . . . . . . . . 15 𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))
75 nfiu1 4476 . . . . . . . . . . . . . . . 16 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛)
76 nfcv 2746 . . . . . . . . . . . . . . . 16 𝑘 𝑚 ∈ (1...𝑛)(𝐸𝑚)
77 fveq2 6084 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
7877cbviunv 4485 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚)
7978a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑘)(𝐸𝑚))
80 oveq2 6531 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (1...𝑘) = (1...𝑛))
8180iuneq1d 4471 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 𝑚 ∈ (1...𝑘)(𝐸𝑚) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8279, 81eqtrd 2639 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 𝑛 ∈ (1...𝑘)(𝐸𝑛) = 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8375, 76, 82cbvmpt 4667 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛)) = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
8474, 83eqtri 2627 . . . . . . . . . . . . . 14 𝐺 = (𝑛 ∈ ℕ ↦ 𝑚 ∈ (1...𝑛)(𝐸𝑚))
85 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
8685, 26syl6eleq 2693 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ (ℤ‘1))
8786adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8870, 3, 26, 71, 73, 84, 87caratheodorylem1 39216 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) = (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))))
8988eqcomd 2611 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑘)))
9015adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ⊆ 𝑋)
91 fvex 6094 . . . . . . . . . . . . . . . . 17 (𝐸𝑛) ∈ V
9255, 91iunex 7012 . . . . . . . . . . . . . . . 16 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V
9374fvmpt2 6181 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑘)(𝐸𝑛) ∈ V) → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9485, 92, 93sylancl 692 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = 𝑛 ∈ (1...𝑘)(𝐸𝑛))
9543a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1...𝑘) ⊆ ℕ)
96 iunss1 4458 . . . . . . . . . . . . . . . 16 ((1...𝑘) ⊆ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9795, 96syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑛 ∈ (1...𝑘)(𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9894, 97eqsstrd 3597 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
9998adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
10070, 2, 90, 99omessle 39188 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑂‘(𝐺𝑘)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10189, 100eqbrtrd 4595 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1021013adant3 1073 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛 ∈ (1...𝑘) ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10354, 62, 63, 69, 102xrletrd 11824 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ (1...𝑘)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
1041033exp 1255 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
105104adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘 ∈ ℕ → (𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))))
106105rexlimdv 3007 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑘 ∈ ℕ 𝑥 ⊆ (1...𝑘) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
10738, 106mpd 15 . . . . 5 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘(𝑛𝑥 ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
10833, 107eqbrtrd 4595 . . . 4 ((𝜑𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
109108ralrimiva 2944 . . 3 (𝜑 → ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11018, 22, 16sge0lefi 39091 . . 3 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) ↔ ∀𝑥 ∈ (𝒫 ℕ ∩ Fin)(Σ^‘((𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑥)) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛))))
111109, 110mpbird 245 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))) ≤ (𝑂 𝑛 ∈ ℕ (𝐸𝑛)))
11216, 23, 29, 111xrletrid 11817 1 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  wral 2891  wrex 2892  Vcvv 3168  cin 3534  wss 3535  𝒫 cpw 4103   cuni 4362   ciun 4445  Disj wdisj 4543   class class class wbr 4573  cmpt 4633  dom cdm 5024  cres 5026  wf 5782  cfv 5786  (class class class)co 6523  Fincfn 7814  0cc0 9788  1c1 9789  +∞cpnf 9923  *cxr 9925  cle 9927  cn 10863  cuz 11515  [,]cicc 12001  ...cfz 12148  Σ^csumge0 39055  OutMeascome 39179  CaraGenccaragen 39181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-ac2 9141  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-disj 4544  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-omul 7425  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-oi 8271  df-card 8621  df-acn 8624  df-ac 8795  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-xadd 11775  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207  df-sumge0 39056  df-ome 39180  df-caragen 39182
This theorem is referenced by:  caratheodory  39218
  Copyright terms: Public domain W3C validator