MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2inf Structured version   Visualization version   GIF version

Theorem card2inf 8411
Description: The definition cardval2 8768 has the curious property that for non-numerable sets (for which ndmfv 6180 yields ), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Hypothesis
Ref Expression
card2inf.1 𝐴 ∈ V
Assertion
Ref Expression
card2inf (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem card2inf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq1 4621 . . . . 5 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ≺ 𝐴))
2 breq1 4621 . . . . 5 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
3 breq1 4621 . . . . 5 (𝑥 = suc 𝑛 → (𝑥𝐴 ↔ suc 𝑛𝐴))
4 0elon 5742 . . . . . . . 8 ∅ ∈ On
5 breq1 4621 . . . . . . . . 9 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≈ 𝐴))
65rspcev 3298 . . . . . . . 8 ((∅ ∈ On ∧ ∅ ≈ 𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
74, 6mpan 705 . . . . . . 7 (∅ ≈ 𝐴 → ∃𝑦 ∈ On 𝑦𝐴)
87con3i 150 . . . . . 6 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ¬ ∅ ≈ 𝐴)
9 card2inf.1 . . . . . . . 8 𝐴 ∈ V
1090dom 8041 . . . . . . 7 ∅ ≼ 𝐴
11 brsdom 7929 . . . . . . 7 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
1210, 11mpbiran 952 . . . . . 6 (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)
138, 12sylibr 224 . . . . 5 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∅ ≺ 𝐴)
14 sucdom2 8107 . . . . . . . 8 (𝑛𝐴 → suc 𝑛𝐴)
1514ad2antll 764 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
16 nnon 7025 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ∈ On)
17 suceloni 6967 . . . . . . . . . 10 (𝑛 ∈ On → suc 𝑛 ∈ On)
18 breq1 4621 . . . . . . . . . . . 12 (𝑦 = suc 𝑛 → (𝑦𝐴 ↔ suc 𝑛𝐴))
1918rspcev 3298 . . . . . . . . . . 11 ((suc 𝑛 ∈ On ∧ suc 𝑛𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
2019ex 450 . . . . . . . . . 10 (suc 𝑛 ∈ On → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2116, 17, 203syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛𝐴 → ∃𝑦 ∈ On 𝑦𝐴))
2221con3dimp 457 . . . . . . . 8 ((𝑛 ∈ ω ∧ ¬ ∃𝑦 ∈ On 𝑦𝐴) → ¬ suc 𝑛𝐴)
2322adantrr 752 . . . . . . 7 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → ¬ suc 𝑛𝐴)
24 brsdom 7929 . . . . . . 7 (suc 𝑛𝐴 ↔ (suc 𝑛𝐴 ∧ ¬ suc 𝑛𝐴))
2515, 23, 24sylanbrc 697 . . . . . 6 ((𝑛 ∈ ω ∧ (¬ ∃𝑦 ∈ On 𝑦𝐴𝑛𝐴)) → suc 𝑛𝐴)
2625exp32 630 . . . . 5 (𝑛 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑛𝐴 → suc 𝑛𝐴)))
271, 2, 3, 13, 26finds2 7048 . . . 4 (𝑥 ∈ ω → (¬ ∃𝑦 ∈ On 𝑦𝐴𝑥𝐴))
2827com12 32 . . 3 (¬ ∃𝑦 ∈ On 𝑦𝐴 → (𝑥 ∈ ω → 𝑥𝐴))
2928ralrimiv 2960 . 2 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ∀𝑥 ∈ ω 𝑥𝐴)
30 omsson 7023 . . 3 ω ⊆ On
31 ssrab 3664 . . 3 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω 𝑥𝐴))
3230, 31mpbiran 952 . 2 (ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑥 ∈ ω 𝑥𝐴)
3329, 32sylibr 224 1 (¬ ∃𝑦 ∈ On 𝑦𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1987  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  wss 3559  c0 3896   class class class wbr 4618  Oncon0 5687  suc csuc 5689  ωcom 7019  cen 7903  cdom 7904  csdm 7905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-om 7020  df-1o 7512  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator