MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2a Structured version   Visualization version   GIF version

Theorem carden2a 9398
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. (This assertion and carden2b 9399 are meant to replace carden 9976 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
carden2a (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)

Proof of Theorem carden2a
StepHypRef Expression
1 df-ne 3020 . 2 ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅)
2 ndmfv 6703 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3 eqeq1 2828 . . . . . . 7 ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅))
42, 3syl5ibr 248 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅))
54con1d 147 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card))
65imp 409 . . . 4 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card)
7 cardid2 9385 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
86, 7syl 17 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵)
9 breq2 5073 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵)))
10 entr 8564 . . . . . 6 ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
1110ex 415 . . . . 5 (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
129, 11syl6bi 255 . . . 4 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵𝐴𝐵)))
13 cardid2 9385 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
14 ndmfv 6703 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1513, 14nsyl4 161 . . . . 5 (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴)
1615ensymd 8563 . . . 4 (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴))
1712, 16impel 508 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
188, 17mpd 15 . 2 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴𝐵)
191, 18sylan2b 595 1 (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  c0 4294   class class class wbr 5069  dom cdm 5558  cfv 6358  cen 8509  cardccrd 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ord 6197  df-on 6198  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8292  df-en 8513  df-card 9371
This theorem is referenced by:  card1  9400
  Copyright terms: Public domain W3C validator