![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardidm | Structured version Visualization version GIF version |
Description: The cardinality function is idempotent. Proposition 10.11 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardidm | ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 8817 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | 1 | ensymd 8048 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
3 | entr 8049 | . . . . . . . 8 ⊢ ((𝑦 ≈ 𝐴 ∧ 𝐴 ≈ (card‘𝐴)) → 𝑦 ≈ (card‘𝐴)) | |
4 | 3 | expcom 450 | . . . . . . 7 ⊢ (𝐴 ≈ (card‘𝐴) → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 → 𝑦 ≈ (card‘𝐴))) |
6 | entr 8049 | . . . . . . . 8 ⊢ ((𝑦 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → 𝑦 ≈ 𝐴) | |
7 | 6 | expcom 450 | . . . . . . 7 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ (card‘𝐴) → 𝑦 ≈ 𝐴)) |
9 | 5, 8 | impbid 202 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ (card‘𝐴))) |
10 | 9 | rabbidv 3220 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
11 | 10 | inteqd 4512 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
12 | cardval3 8816 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
13 | cardon 8808 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
14 | oncardval 8819 | . . . 4 ⊢ ((card‘𝐴) ∈ On → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) | |
15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ (card‘𝐴)}) |
16 | 11, 12, 15 | 3eqtr4rd 2696 | . 2 ⊢ (𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
17 | card0 8822 | . . 3 ⊢ (card‘∅) = ∅ | |
18 | ndmfv 6256 | . . . 4 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
19 | 18 | fveq2d 6233 | . . 3 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘∅)) |
20 | 17, 19, 18 | 3eqtr4a 2711 | . 2 ⊢ (¬ 𝐴 ∈ dom card → (card‘(card‘𝐴)) = (card‘𝐴)) |
21 | 16, 20 | pm2.61i 176 | 1 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 {crab 2945 ∅c0 3948 ∩ cint 4507 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ‘cfv 5926 ≈ cen 7994 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-er 7787 df-en 7998 df-card 8803 |
This theorem is referenced by: oncard 8824 cardlim 8836 cardiun 8846 alephnbtwn2 8933 infenaleph 8952 dfac12k 9007 pwsdompw 9064 cardcf 9112 cfeq0 9116 cfflb 9119 alephval2 9432 cfpwsdom 9444 gch2 9535 tskcard 9641 hashcard 13184 |
Copyright terms: Public domain | W3C validator |