Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem1 Structured version   Visualization version   GIF version

Theorem carsgclctunlem1 31474
Description: Lemma for carsgclctun 31478. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem1.1 (𝜑Disj 𝑦𝐴 𝑦)
carsgclctunlem1.2 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem1
Dummy variables 𝑎 𝑒 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4838 . . . . 5 (𝑎 = ∅ → 𝑎 = ∅)
21ineq2d 4186 . . . 4 (𝑎 = ∅ → (𝐸 𝑎) = (𝐸 ∅))
32fveq2d 6667 . . 3 (𝑎 = ∅ → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 ∅)))
4 esumeq1 31192 . . 3 (𝑎 = ∅ → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
53, 4eqeq12d 2834 . 2 (𝑎 = ∅ → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦))))
6 unieq 4838 . . . . 5 (𝑎 = 𝑏 𝑎 = 𝑏)
76ineq2d 4186 . . . 4 (𝑎 = 𝑏 → (𝐸 𝑎) = (𝐸 𝑏))
87fveq2d 6667 . . 3 (𝑎 = 𝑏 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝑏)))
9 esumeq1 31192 . . 3 (𝑎 = 𝑏 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
108, 9eqeq12d 2834 . 2 (𝑎 = 𝑏 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))))
11 unieq 4838 . . . . 5 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
1211ineq2d 4186 . . . 4 (𝑎 = (𝑏 ∪ {𝑥}) → (𝐸 𝑎) = (𝐸 (𝑏 ∪ {𝑥})))
1312fveq2d 6667 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))))
14 esumeq1 31192 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
1513, 14eqeq12d 2834 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
16 unieq 4838 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝐴)
1716ineq2d 4186 . . . 4 (𝑎 = 𝐴 → (𝐸 𝑎) = (𝐸 𝐴))
1817fveq2d 6667 . . 3 (𝑎 = 𝐴 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝐴)))
19 esumeq1 31192 . . 3 (𝑎 = 𝐴 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
2018, 19eqeq12d 2834 . 2 (𝑎 = 𝐴 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦))))
21 carsgsiga.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
22 uni0 4857 . . . . . 6 ∅ = ∅
2322ineq2i 4183 . . . . 5 (𝐸 ∅) = (𝐸 ∩ ∅)
24 in0 4342 . . . . 5 (𝐸 ∩ ∅) = ∅
2523, 24eqtri 2841 . . . 4 (𝐸 ∅) = ∅
2625fveq2i 6666 . . 3 (𝑀‘(𝐸 ∅)) = (𝑀‘∅)
27 esumnul 31206 . . 3 Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)) = 0
2821, 26, 273eqtr4g 2878 . 2 (𝜑 → (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
29 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
3029eqcomd 2824 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸 𝑏)))
31 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
3231ineq2d 4186 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝐸𝑦) = (𝐸𝑥))
3332fveq2d 6667 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
34 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑥 ∈ (𝐴𝑏))
35 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3635adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
37 carsgclctunlem1.2 . . . . . . . . . 10 (𝜑𝐸 ∈ 𝒫 𝑂)
3837adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝐸 ∈ 𝒫 𝑂)
3938elpwincl1 30213 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸𝑥) ∈ 𝒫 𝑂)
4036, 39ffvelrnd 6844 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘(𝐸𝑥)) ∈ (0[,]+∞))
4133, 34, 40esumsn 31223 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4241adantr 481 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4330, 42oveq12d 7163 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
44 nfv 1906 . . . . . 6 𝑦(𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏)))
45 nfcv 2974 . . . . . 6 𝑦𝑏
46 nfcv 2974 . . . . . 6 𝑦{𝑥}
47 vex 3495 . . . . . . 7 𝑏 ∈ V
4847a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
49 snex 5322 . . . . . . 7 {𝑥} ∈ V
5049a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → {𝑥} ∈ V)
5134eldifbd 3946 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ¬ 𝑥𝑏)
52 disjsn 4639 . . . . . . 7 ((𝑏 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑏)
5351, 52sylibr 235 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑥}) = ∅)
5435ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5537ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝐸 ∈ 𝒫 𝑂)
5655elpwincl1 30213 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝐸𝑦) ∈ 𝒫 𝑂)
5754, 56ffvelrnd 6844 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
5835ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5937ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝐸 ∈ 𝒫 𝑂)
6059elpwincl1 30213 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝐸𝑦) ∈ 𝒫 𝑂)
6158, 60ffvelrnd 6844 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
6244, 45, 46, 48, 50, 53, 57, 61esumsplit 31211 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
6362adantr 481 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
64 inass 4193 . . . . . . . . . 10 ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏))
65 indir 4249 . . . . . . . . . . . 12 (( 𝑏𝑥) ∩ 𝑏) = (( 𝑏 𝑏) ∪ (𝑥 𝑏))
66 inidm 4192 . . . . . . . . . . . . . . 15 ( 𝑏 𝑏) = 𝑏
6766a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 𝑏) = 𝑏)
68 incom 4175 . . . . . . . . . . . . . . 15 ( 𝑏𝑥) = (𝑥 𝑏)
69 carsgclctunlem1.1 . . . . . . . . . . . . . . . . 17 (𝜑Disj 𝑦𝐴 𝑦)
7069adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Disj 𝑦𝐴 𝑦)
71 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → 𝑏𝐴)
7271adantrr 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏𝐴)
7370, 72, 34disjuniel 30275 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏𝑥) = ∅)
7468, 73syl5eqr 2867 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑥 𝑏) = ∅)
7567, 74uneq12d 4137 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = ( 𝑏 ∪ ∅))
76 un0 4341 . . . . . . . . . . . . 13 ( 𝑏 ∪ ∅) = 𝑏
7775, 76syl6eq 2869 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = 𝑏)
7865, 77syl5eq 2865 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∩ 𝑏) = 𝑏)
7978ineq2d 4186 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏)) = (𝐸 𝑏))
8064, 79syl5eq 2865 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 𝑏))
8180fveq2d 6667 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) = (𝑀‘(𝐸 𝑏)))
82 indif2 4244 . . . . . . . . . 10 (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)
83 uncom 4126 . . . . . . . . . . . . . 14 ( 𝑏𝑥) = (𝑥 𝑏)
8483difeq1i 4092 . . . . . . . . . . . . 13 (( 𝑏𝑥) ∖ 𝑏) = ((𝑥 𝑏) ∖ 𝑏)
85 disj3 4399 . . . . . . . . . . . . . . 15 ((𝑥 𝑏) = ∅ ↔ 𝑥 = (𝑥 𝑏))
8685biimpi 217 . . . . . . . . . . . . . 14 ((𝑥 𝑏) = ∅ → 𝑥 = (𝑥 𝑏))
87 difun2 4425 . . . . . . . . . . . . . 14 ((𝑥 𝑏) ∖ 𝑏) = (𝑥 𝑏)
8886, 87syl6reqr 2872 . . . . . . . . . . . . 13 ((𝑥 𝑏) = ∅ → ((𝑥 𝑏) ∖ 𝑏) = 𝑥)
8984, 88syl5eq 2865 . . . . . . . . . . . 12 ((𝑥 𝑏) = ∅ → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9074, 89syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9190ineq2d 4186 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = (𝐸𝑥))
9282, 91syl5eqr 2867 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏) = (𝐸𝑥))
9392fveq2d 6667 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)) = (𝑀‘(𝐸𝑥)))
9481, 93oveq12d 7163 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
95 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
9695adantr 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑂𝑉)
9735adantr 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9821adantr 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → (𝑀‘∅) = 0)
99 carsgsiga.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
100993adant1r 1169 . . . . . . . . . . . 12 (((𝜑𝑏𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
101 fiunelcarsg.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
102 ssfi 8726 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑏𝐴) → 𝑏 ∈ Fin)
103101, 102sylan 580 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ∈ Fin)
104 fiunelcarsg.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
105104adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑏𝐴) → 𝐴 ⊆ (toCaraSiga‘𝑀))
10671, 105sstrd 3974 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ⊆ (toCaraSiga‘𝑀))
10796, 97, 98, 100, 103, 106fiunelcarsg 31473 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → 𝑏 ∈ (toCaraSiga‘𝑀))
10895, 35elcarsg 31462 . . . . . . . . . . . 12 (𝜑 → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
109108adantr 481 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
110107, 109mpbid 233 . . . . . . . . . 10 ((𝜑𝑏𝐴) → ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒)))
111110simprd 496 . . . . . . . . 9 ((𝜑𝑏𝐴) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
112111adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
11338elpwincl1 30213 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ ( 𝑏𝑥)) ∈ 𝒫 𝑂)
114 simpr 485 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → 𝑒 = (𝐸 ∩ ( 𝑏𝑥)))
115114ineq1d 4185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏))
116115fveq2d 6667 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)))
117114difeq1d 4095 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))
118117fveq2d 6667 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)))
119116, 118oveq12d 7163 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → ((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))))
120114fveq2d 6667 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀𝑒) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
121119, 120eqeq12d 2834 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) ↔ ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
122113, 121rspcdv 3612 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
123112, 122mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
12494, 123eqtr3d 2855 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
125124adantr 481 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
126 uniun 4849 . . . . . . . 8 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
127 vex 3495 . . . . . . . . . 10 𝑥 ∈ V
128127unisn 4846 . . . . . . . . 9 {𝑥} = 𝑥
129128uneq2i 4133 . . . . . . . 8 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
130126, 129eqtri 2841 . . . . . . 7 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
131130ineq2i 4183 . . . . . 6 (𝐸 (𝑏 ∪ {𝑥})) = (𝐸 ∩ ( 𝑏𝑥))
132131fveq2i 6666 . . . . 5 (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))
133125, 132syl6reqr 2872 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
13443, 63, 1333eqtr4rd 2864 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
135134ex 413 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
1365, 10, 15, 20, 28, 135, 101findcard2d 8748 1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   cuni 4830  Disj wdisj 5022   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  ωcom 7569  cdom 8495  Fincfn 8497  0cc0 10525  +∞cpnf 10660  cle 10664   +𝑒 cxad 12493  [,]cicc 12729  Σ*cesum 31185  toCaraSigaccarsg 31458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-ordt 16762  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-ps 17798  df-tsr 17799  df-plusf 17839  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-subrg 19462  df-abv 19517  df-lmod 19565  df-scaf 19566  df-sra 19873  df-rgmod 19874  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-tmd 22608  df-tgp 22609  df-tsms 22662  df-trg 22695  df-xms 22857  df-ms 22858  df-tms 22859  df-nm 23119  df-ngp 23120  df-nrg 23122  df-nlm 23123  df-ii 23412  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-esum 31186  df-carsg 31459
This theorem is referenced by:  carsggect  31475  carsgclctunlem2  31476
  Copyright terms: Public domain W3C validator