Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem3 Structured version   Visualization version   GIF version

Theorem carsgclctunlem3 31573
Description: Lemma for carsgclctun 31574. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem3.1 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem3 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem3
Dummy variables 𝑒 𝑓 𝑘 𝑛 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12813 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 carsgclctunlem3.1 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
43elpwincl1 30280 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
52, 4ffvelrnd 6847 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
61, 5sseldi 3965 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
73elpwdifcl 30281 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
82, 7ffvelrnd 6847 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
91, 8sseldi 3965 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
106, 9xaddcld 12688 . . . . 5 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
1110adantr 483 . . . 4 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
12 pnfge 12519 . . . 4 (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
1311, 12syl 17 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
14 simpr 487 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → (𝑀𝐸) = +∞)
1513, 14breqtrrd 5087 . 2 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
16 unieq 4840 . . . . . . . . . . . . 13 (𝐴 = ∅ → 𝐴 = ∅)
17 uni0 4859 . . . . . . . . . . . . 13 ∅ = ∅
1816, 17syl6eq 2872 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918ineq2d 4189 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∩ ∅))
20 in0 4345 . . . . . . . . . . 11 (𝐸 ∩ ∅) = ∅
2119, 20syl6eq 2872 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = ∅)
2221fveq2d 6669 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀‘∅))
2318difeq2d 4099 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∖ ∅))
24 dif0 4332 . . . . . . . . . . 11 (𝐸 ∖ ∅) = 𝐸
2523, 24syl6eq 2872 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = 𝐸)
2625fveq2d 6669 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀𝐸))
2722, 26oveq12d 7168 . . . . . . . 8 (𝐴 = ∅ → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
2827adantl 484 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
29 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
3029adantr 483 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
3130oveq1d 7165 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘∅) +𝑒 (𝑀𝐸)) = (0 +𝑒 (𝑀𝐸)))
322, 3ffvelrnd 6847 . . . . . . . . . 10 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
331, 32sseldi 3965 . . . . . . . . 9 (𝜑 → (𝑀𝐸) ∈ ℝ*)
3433adantr 483 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀𝐸) ∈ ℝ*)
35 xaddid2 12629 . . . . . . . 8 ((𝑀𝐸) ∈ ℝ* → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3634, 35syl 17 . . . . . . 7 ((𝜑𝐴 = ∅) → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3728, 31, 363eqtrd 2860 . . . . . 6 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸))
3837, 34eqeltrd 2913 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
39 xeqlelt 30493 . . . . . . 7 ((((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4038, 34, 39syl2anc 586 . . . . . 6 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4137, 40mpbid 234 . . . . 5 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸)))
4241simpld 497 . . . 4 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
4342adantlr 713 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
44 carsgclctun.2 . . . . . . . 8 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
45 fvex 6678 . . . . . . . . 9 (toCaraSiga‘𝑀) ∈ V
4645ssex 5218 . . . . . . . 8 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 ∈ V)
47 0sdomg 8640 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
4844, 46, 473syl 18 . . . . . . 7 (𝜑 → (∅ ≺ 𝐴𝐴 ≠ ∅))
4948biimpar 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → ∅ ≺ 𝐴)
5049adantlr 713 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
51 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
52 nnenom 13342 . . . . . . . 8 ℕ ≈ ω
5352ensymi 8553 . . . . . . 7 ω ≈ ℕ
54 domentr 8562 . . . . . . 7 ((𝐴 ≼ ω ∧ ω ≈ ℕ) → 𝐴 ≼ ℕ)
5551, 53, 54sylancl 588 . . . . . 6 (𝜑𝐴 ≼ ℕ)
5655ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → 𝐴 ≼ ℕ)
57 fodomr 8662 . . . . 5 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
5850, 56, 57syl2anc 586 . . . 4 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
59 fveq2 6665 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
6059iundisj 24143 . . . . . . . . 9 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
61 fofn 6587 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
62 fniunfv 7000 . . . . . . . . . . . 12 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
6361, 62syl 17 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
64 forn 6588 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
6564unieqd 4842 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 ran 𝑓 = 𝐴)
6663, 65eqtrd 2856 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6766adantl 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6860, 67syl5eqr 2870 . . . . . . . 8 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) = 𝐴)
6968ineq2d 4189 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7069fveq2d 6669 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7168difeq2d 4099 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7271fveq2d 6669 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7370, 72oveq12d 7168 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) = ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))))
74 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
7574ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑂𝑉)
762ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
7729ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘∅) = 0)
78 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
79783adant1r 1173 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
80793adant1r 1173 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
81803adant1r 1173 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
82 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
83823adant1r 1173 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
84833adant1r 1173 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
85843adant1r 1173 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
8659iundisj2 24144 . . . . . . 7 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
8786a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))
8875adantr 483 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑂𝑉)
8976adantr 483 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9044ad4antr 730 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ (toCaraSiga‘𝑀))
91 fof 6585 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
9291ad2antlr 725 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶𝐴)
93 simpr 487 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9492, 93ffvelrnd 6847 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝐴)
9590, 94sseldd 3968 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (toCaraSiga‘𝑀))
9677adantr 483 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
97813adant1r 1173 . . . . . . . 8 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
9888, 89, 96, 97carsgsigalem 31568 . . . . . . 7 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑒 ∈ 𝒫 𝑂𝑔 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑔)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑔)))
9991ad3antlr 729 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝐴)
100 fzossnn 13080 . . . . . . . . . . . . 13 (1..^𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (1..^𝑛) ⊆ ℕ)
102101sselda 3967 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ)
10399, 102ffvelrnd 6847 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ 𝐴)
104103ralrimiva 3182 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴)
105 dfiun2g 4948 . . . . . . . . 9 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
106104, 105syl 17 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
107 eqid 2821 . . . . . . . . . . . 12 (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘))
108107rnmpt 5822 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)}
109 fzofi 13336 . . . . . . . . . . . 12 (1..^𝑛) ∈ Fin
110 mptfi 8817 . . . . . . . . . . . 12 ((1..^𝑛) ∈ Fin → (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
111 rnfi 8801 . . . . . . . . . . . 12 ((𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
112109, 110, 111mp2b 10 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin
113108, 112eqeltrri 2910 . . . . . . . . . 10 {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin
114113a1i 11 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin)
11590adantr 483 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
116115, 103sseldd 3968 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ (toCaraSiga‘𝑀))
117116ralrimiva 3182 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
118107rnmptss 6881 . . . . . . . . . . 11 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
119117, 118syl 17 . . . . . . . . . 10 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
120108, 119eqsstrrid 4016 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ⊆ (toCaraSiga‘𝑀))
12188, 89, 96, 97, 114, 120fiunelcarsg 31569 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ (toCaraSiga‘𝑀))
122106, 121eqeltrd 2913 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
12388, 89, 95, 98, 122difelcarsg2 31566 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) ∈ (toCaraSiga‘𝑀))
1243ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝐸 ∈ 𝒫 𝑂)
125 simpllr 774 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀𝐸) ≠ +∞)
12675, 76, 77, 81, 85, 87, 123, 124, 125carsgclctunlem2 31572 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) ≤ (𝑀𝐸))
12773, 126eqbrtrrd 5083 . . . 4 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12858, 127exlimddv 1932 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12943, 128pm2.61dane 3104 . 2 ((𝜑 ∧ (𝑀𝐸) ≠ +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
13015, 129pm2.61dane 3104 1 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cdif 3933  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4832   ciun 4912  Disj wdisj 5024   class class class wbr 5059  cmpt 5139  ran crn 5551   Fn wfn 6345  wf 6346  ontowfo 6348  cfv 6350  (class class class)co 7150  ωcom 7574  cen 8500  cdom 8501  csdm 8502  Fincfn 8503  0cc0 10531  1c1 10532  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cn 11632   +𝑒 cxad 12499  [,]cicc 12735  ..^cfzo 13027  Σ*cesum 31281  toCaraSigaccarsg 31554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-ordt 16768  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-ps 17804  df-tsr 17805  df-plusf 17845  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-abv 19582  df-lmod 19630  df-scaf 19631  df-sra 19938  df-rgmod 19939  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-tmd 22674  df-tgp 22675  df-tsms 22729  df-trg 22762  df-xms 22924  df-ms 22925  df-tms 22926  df-nm 23186  df-ngp 23187  df-nrg 23189  df-nlm 23190  df-ii 23479  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-esum 31282  df-carsg 31555
This theorem is referenced by:  carsgclctun  31574
  Copyright terms: Public domain W3C validator