MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcval Structured version   Visualization version   GIF version

Theorem catcval 17350
Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcval.c 𝐶 = (CatCat‘𝑈)
catcval.u (𝜑𝑈𝑉)
catcval.b (𝜑𝐵 = (𝑈 ∩ Cat))
catcval.h (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
catcval.o (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
Assertion
Ref Expression
catcval (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑥,𝑣,𝑦,𝑧,𝐵   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem catcval
Dummy variables 𝑢 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcval.c . 2 𝐶 = (CatCat‘𝑈)
2 df-catc 17349 . . 3 CatCat = (𝑢 ∈ V ↦ (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
3 vex 3497 . . . . . 6 𝑢 ∈ V
43inex1 5213 . . . . 5 (𝑢 ∩ Cat) ∈ V
54a1i 11 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) ∈ V)
6 simpr 487 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
76ineq1d 4187 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) = (𝑈 ∩ Cat))
8 catcval.b . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Cat))
98adantr 483 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝐵 = (𝑈 ∩ Cat))
107, 9eqtr4d 2859 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) = 𝐵)
11 simpr 487 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1211opeq2d 4803 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
13 eqidd 2822 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥 Func 𝑦) = (𝑥 Func 𝑦))
1411, 11, 13mpoeq123dv 7223 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
15 catcval.h . . . . . . . 8 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
1615ad2antrr 724 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
1714, 16eqtr4d 2859 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦)) = 𝐻)
1817opeq2d 4803 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
1911sqxpeqd 5581 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
20 eqidd 2822 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)) = (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))
2119, 11, 20mpoeq123dv 7223 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
22 catcval.o . . . . . . . 8 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
2322ad2antrr 724 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
2421, 23eqtr4d 2859 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = · )
2524opeq2d 4803 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
2612, 18, 25tpeq123d 4677 . . . 4 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
275, 10, 26csbied2 3919 . . 3 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
28 catcval.u . . . 4 (𝜑𝑈𝑉)
2928elexd 3514 . . 3 (𝜑𝑈 ∈ V)
30 tpex 7464 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
3130a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
322, 27, 29, 31fvmptd2 6770 . 2 (𝜑 → (CatCat‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
331, 32syl5eq 2868 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  csb 3882  cin 3934  {ctp 4564  cop 4566   × cxp 5547  cfv 6349  (class class class)co 7150  cmpo 7152  2nd c2nd 7682  ndxcnx 16474  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929   Func cfunc 17118  func ccofu 17120  CatCatccatc 17348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-oprab 7154  df-mpo 7155  df-catc 17349
This theorem is referenced by:  catcbas  17351  catchomfval  17352  catccofval  17354
  Copyright terms: Public domain W3C validator