Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau3lem Structured version   Visualization version   GIF version

Theorem cau3lem 14088
 Description: Lemma for cau3 14089. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
cau3lem.1 𝑍 ⊆ ℤ
cau3lem.2 (𝜏𝜓)
cau3lem.3 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
cau3lem.4 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
cau3lem.5 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
cau3lem.6 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
cau3lem.7 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
Assertion
Ref Expression
cau3lem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
Distinct variable groups:   𝑘,𝑚,𝜒   𝑥,𝑘,𝐷,𝑚   𝑘,𝐹,𝑚,𝑥   𝑗,𝑘,𝑚,𝑥,𝜑   𝑘,𝐺,𝑚,𝑥   𝜓,𝑚,𝑥   𝜏,𝑥   𝜃,𝑘   𝑥,𝑍
Allowed substitution hints:   𝜓(𝑗,𝑘)   𝜒(𝑥,𝑗)   𝜃(𝑥,𝑗,𝑚)   𝜏(𝑗,𝑘,𝑚)   𝐷(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝑍(𝑗,𝑘,𝑚)

Proof of Theorem cau3lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq2 4655 . . . . . 6 (𝑥 = 𝑧 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
21anbi2d 740 . . . . 5 (𝑥 = 𝑧 → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
32rexralbidv 3056 . . . 4 (𝑥 = 𝑧 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
43cbvralv 3169 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
5 rphalfcl 11855 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 4655 . . . . . . . . . 10 (𝑧 = (𝑥 / 2) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
76anbi2d 740 . . . . . . . . 9 (𝑧 = (𝑥 / 2) → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
87rexralbidv 3056 . . . . . . . 8 (𝑧 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
98rspcv 3303 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
1110adantl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
12 cau3lem.2 . . . . . . . . . 10 (𝜏𝜓)
1312ralimi 2951 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)𝜏 → ∀𝑘 ∈ (ℤ𝑗)𝜓)
14 r19.26 3062 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
15 fveq2 6189 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
16 cau3lem.4 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝜓𝜃))
1815oveq1d 6662 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑗)) = ((𝐹𝑚)𝐷(𝐹𝑗)))
1918fveq2d 6193 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))))
2019breq1d 4661 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2117, 20anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2221cbvralv 3169 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2322biimpi 206 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2423a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2514, 24syl5bir 233 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2625expdimp 453 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
27 cau3lem.1 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
2827sseli 3597 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ ℤ)
29 uzid 11699 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
31 fveq2 6189 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
32 cau3lem.3 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
3331, 32syl 17 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝜓𝜒))
3433rspcva 3305 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3530, 34sylan 488 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3635adantll 750 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3726, 36jctild 566 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))))
38 simplll 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜑)
39 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜃)
40 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜒)
41 cau3lem.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4238, 39, 40, 41syl3anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4342breq1d 4661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)))
4443anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2))))
45 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜓)
46 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ+)
4746rpred 11869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ)
48 cau3lem.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
4938, 45, 39, 40, 47, 48syl122anc 1334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5044, 49sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5150expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5251impr 649 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5352an32s 846 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒𝜃)) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5453anassrs 680 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) ∧ 𝜃) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5554expimpd 629 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → ((𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5655ralimdv 2962 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → (∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5756impr 649 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5857an32s 846 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5958expr 643 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
60 uzss 11705 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
61 ssralv 3664 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6359, 62sylan9 689 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6463an32s 846 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6564expimpd 629 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6665ralimdva 2961 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6766ex 450 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6867com23 86 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6968adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7014, 69syl5bir 233 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7170expdimp 453 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7237, 71mpdd 43 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7313, 72sylan2 491 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7473imdistanda 729 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
75 r19.26 3062 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
76 r19.26 3062 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7774, 75, 763imtr4g 285 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7877reximdva 3016 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7911, 78syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
8079ralrimdva 2968 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
814, 80syl5bi 232 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
82 fveq2 6189 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
8331oveq1d 6662 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
8483fveq2d 6193 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
8584breq1d 4661 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8682, 85raleqbidv 3150 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8786rspcv 3303 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8887ad2antlr 763 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
89 fveq2 6189 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
9089oveq2d 6663 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑗)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑘)))
9190fveq2d 6193 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))))
9291breq1d 4661 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥))
9392cbvralv 3169 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥)
9434anim2i 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓)) → (𝜑𝜒))
9594anassrs 680 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (𝜑𝜒))
96 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)𝜓)
97 cau3lem.5 . . . . . . . . . . . . . . 15 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
9897breq1d 4661 . . . . . . . . . . . . . 14 ((𝜑𝜒𝜓) → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
99983expia 1266 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝜓 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10099ralimdv 2962 . . . . . . . . . . . 12 ((𝜑𝜒) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10195, 96, 100sylc 65 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
102 ralbi 3066 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
103101, 102syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10493, 103syl5bb 272 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10588, 104sylibd 229 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10613, 105sylan2 491 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
107106imdistanda 729 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑗)) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10830, 107sylan2 491 . . . . 5 ((𝜑𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
109 r19.26 3062 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
110108, 76, 1093imtr4g 285 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
111110reximdva 3016 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
112111ralimdv 2962 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
11381, 112impbid 202 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989  ∀wral 2911  ∃wrex 2912   ⊆ wss 3572   class class class wbr 4651  ‘cfv 5886  (class class class)co 6647  ℝcr 9932   < clt 10071   / cdiv 10681  2c2 11067  ℤcz 11374  ℤ≥cuz 11684  ℝ+crp 11829 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-2 11076  df-z 11375  df-uz 11685  df-rp 11830 This theorem is referenced by:  cau3  14089  iscau3  23070
 Copyright terms: Public domain W3C validator