MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Structured version   Visualization version   GIF version

Theorem caucvgrlem2 14575
Description: Lemma for caucvgr 14576. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem2.5 𝐻:ℂ⟶ℝ
caucvgrlem2.6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
Assertion
Ref Expression
caucvgrlem2 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Distinct variable groups:   𝑗,𝑘,𝑛,𝑥,𝐴   𝑗,𝐹,𝑘,𝑛,𝑥   𝑗,𝐻,𝑘,𝑛,𝑥   𝜑,𝑗,𝑘,𝑛,𝑥

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3 𝐻:ℂ⟶ℝ
2 caucvgr.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 fcompt 6551 . . 3 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
41, 2, 3sylancr 698 . 2 (𝜑 → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
5 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
6 fco 6207 . . . . . 6 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹):𝐴⟶ℝ)
71, 2, 6sylancr 698 . . . . 5 (𝜑 → (𝐻𝐹):𝐴⟶ℝ)
8 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
9 caucvgr.4 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
102ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝐹:𝐴⟶ℂ)
11 simprr 813 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑘𝐴)
1210, 11ffvelrnd 6511 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑘) ∈ ℂ)
13 simprl 811 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑗𝐴)
1410, 13ffvelrnd 6511 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑗) ∈ ℂ)
15 caucvgrlem2.6 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1612, 14, 15syl2anc 696 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
171ffvelrni 6509 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) ∈ ℝ)
1812, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑘)) ∈ ℝ)
191ffvelrni 6509 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∈ ℂ → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2014, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2118, 20resubcld 10621 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℝ)
2221recnd 10231 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℂ)
2322abscld 14345 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ)
2412, 14subcld 10555 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
2524abscld 14345 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
26 rpre 12003 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 765 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑥 ∈ ℝ)
28 lelttr 10291 . . . . . . . . . . . . . 14 (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
2923, 25, 27, 28syl3anc 1463 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3016, 29mpand 713 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
31 fvco3 6425 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
3210, 11, 31syl2anc 696 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
33 fvco3 6425 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑗𝐴) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3410, 13, 33syl2anc 696 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3532, 34oveq12d 6819 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗)) = ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))))
3635fveq2d 6344 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) = (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))))
3736breq1d 4802 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥 ↔ (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3830, 37sylibrd 249 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
3938imim2d 57 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4039anassrs 683 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) ∧ 𝑘𝐴) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4140ralimdva 3088 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) → (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4241reximdva 3143 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4342ralimdva 3088 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
449, 43mpd 15 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
455, 7, 8, 44caurcvgr 14574 . . . 4 (𝜑 → (𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)))
46 rlimrel 14394 . . . . 5 Rel ⇝𝑟
4746releldmi 5505 . . . 4 ((𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)) → (𝐻𝐹) ∈ dom ⇝𝑟 )
4845, 47syl 17 . . 3 (𝜑 → (𝐻𝐹) ∈ dom ⇝𝑟 )
49 ax-resscn 10156 . . . . 5 ℝ ⊆ ℂ
50 fss 6205 . . . . 5 (((𝐻𝐹):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐻𝐹):𝐴⟶ℂ)
517, 49, 50sylancl 697 . . . 4 (𝜑 → (𝐻𝐹):𝐴⟶ℂ)
5251, 8rlimdm 14452 . . 3 (𝜑 → ((𝐻𝐹) ∈ dom ⇝𝑟 ↔ (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹))))
5348, 52mpbid 222 . 2 (𝜑 → (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
544, 53eqbrtrrd 4816 1 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  wral 3038  wrex 3039  wss 3703   class class class wbr 4792  cmpt 4869  dom cdm 5254  ccom 5258  wf 6033  cfv 6037  (class class class)co 6801  supcsup 8499  cc 10097  cr 10098  +∞cpnf 10234  *cxr 10236   < clt 10237  cle 10238  cmin 10429  +crp 11996  abscabs 14144  lim supclsp 14371  𝑟 crli 14386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-inf 8502  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-ico 12345  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-limsup 14372  df-rlim 14390
This theorem is referenced by:  caucvgr  14576
  Copyright terms: Public domain W3C validator