Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Visualization version   GIF version

Theorem caushft 33868
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caushft.4 𝑊 = (ℤ‘(𝑀 + 𝑁))
caushft.5 (𝜑𝑁 ∈ ℤ)
caushft.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
caushft.8 (𝜑𝐹 ∈ (Cau‘𝐷))
caushft.9 (𝜑𝐺:𝑊𝑋)
Assertion
Ref Expression
caushft (𝜑𝐺 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑋   𝑘,𝐹   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem caushft
Dummy variables 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5 (𝜑𝐹 ∈ (Cau‘𝐷))
2 caures.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22338 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 caures.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
7 caushft.7 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
87ralrimiva 3102 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
9 fveq2 6350 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
10 oveq1 6818 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 𝑁) = (𝑗 + 𝑁))
1110fveq2d 6354 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁)))
129, 11eqeq12d 2773 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁))))
1312rspccva 3446 . . . . . . 7 ((∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
148, 13sylan 489 . . . . . 6 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
152, 5, 6, 7, 14iscau4 23275 . . . . 5 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))))
161, 15mpbid 222 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))
1716simprd 482 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
182eleq2i 2829 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
1918biimpi 206 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
20 caushft.5 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
21 eluzadd 11906 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
2219, 20, 21syl2anr 496 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
23 caushft.4 . . . . . . 7 𝑊 = (ℤ‘(𝑀 + 𝑁))
2422, 23syl6eleqr 2848 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ 𝑊)
25 simplr 809 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗𝑍)
2625, 2syl6eleq 2847 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ𝑀))
27 eluzelz 11887 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2826, 27syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ)
2920ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ)
30 simpr 479 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ‘(𝑗 + 𝑁)))
31 eluzsub 11907 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
3228, 29, 30, 31syl3anc 1477 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
33 simp3 1133 . . . . . . . . . 10 ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
3433ralimi 3088 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
35 oveq1 6818 . . . . . . . . . . . . 13 (𝑘 = (𝑚𝑁) → (𝑘 + 𝑁) = ((𝑚𝑁) + 𝑁))
3635fveq2d 6354 . . . . . . . . . . . 12 (𝑘 = (𝑚𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚𝑁) + 𝑁)))
3736oveq1d 6826 . . . . . . . . . . 11 (𝑘 = (𝑚𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))))
3837breq1d 4812 . . . . . . . . . 10 (𝑘 = (𝑚𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3938rspcv 3443 . . . . . . . . 9 ((𝑚𝑁) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
4032, 34, 39syl2im 40 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
41 eluzelz 11887 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ)
4241adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ)
4342zcnd 11673 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ)
4420zcnd 11673 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4544ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ)
4643, 45npcand 10586 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝑚𝑁) + 𝑁) = 𝑚)
4746fveq2d 6354 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘((𝑚𝑁) + 𝑁)) = (𝐺𝑚))
4847oveq1d 6826 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))))
493ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋))
50 caushft.9 . . . . . . . . . . . . 13 (𝜑𝐺:𝑊𝑋)
5150ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐺:𝑊𝑋)
5223uztrn2 11895 . . . . . . . . . . . . 13 (((𝑗 + 𝑁) ∈ 𝑊𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5324, 52sylan 489 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5451, 53ffvelrnd 6521 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺𝑚) ∈ 𝑋)
5550adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝐺:𝑊𝑋)
5655, 24ffvelrnd 6521 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
5756adantr 472 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
58 metsym 22354 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5949, 54, 57, 58syl3anc 1477 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6048, 59eqtrd 2792 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6160breq1d 4812 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6240, 61sylibd 229 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6362ralrimdva 3105 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
64 fveq2 6350 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (ℤ𝑛) = (ℤ‘(𝑗 + 𝑁)))
65 fveq2 6350 . . . . . . . . . 10 (𝑛 = (𝑗 + 𝑁) → (𝐺𝑛) = (𝐺‘(𝑗 + 𝑁)))
6665oveq1d 6826 . . . . . . . . 9 (𝑛 = (𝑗 + 𝑁) → ((𝐺𝑛)𝐷(𝐺𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6766breq1d 4812 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6864, 67raleqbidv 3289 . . . . . . 7 (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6968rspcev 3447 . . . . . 6 (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
7024, 63, 69syl6an 569 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7170rexlimdva 3167 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7271ralimdv 3099 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7317, 72mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
746, 20zaddcld 11676 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
75 eqidd 2759 . . 3 ((𝜑𝑚𝑊) → (𝐺𝑚) = (𝐺𝑚))
76 eqidd 2759 . . 3 ((𝜑𝑛𝑊) → (𝐺𝑛) = (𝐺𝑛))
7723, 5, 74, 75, 76, 50iscauf 23276 . 2 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7873, 77mpbird 247 1 (𝜑𝐺 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  wral 3048  wrex 3049   class class class wbr 4802  dom cdm 5264  wf 6043  cfv 6047  (class class class)co 6811  pm cpm 8022  cc 10124   + caddc 10129   < clt 10264  cmin 10456  cz 11567  cuz 11877  +crp 12023  ∞Metcxmt 19931  Metcme 19932  Caucca 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-n0 11483  df-z 11568  df-uz 11878  df-rp 12024  df-xneg 12137  df-xadd 12138  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-cau 23252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator