MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv1 Structured version   Visualization version   GIF version

Theorem cbv1 2404
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018.)
Hypotheses
Ref Expression
cbv1.1 𝑥𝜑
cbv1.2 𝑦𝜑
cbv1.3 (𝜑 → Ⅎ𝑦𝜓)
cbv1.4 (𝜑 → Ⅎ𝑥𝜒)
cbv1.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbv1 (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))

Proof of Theorem cbv1
StepHypRef Expression
1 cbv1.2 . . . . 5 𝑦𝜑
2 cbv1.3 . . . . 5 (𝜑 → Ⅎ𝑦𝜓)
31, 2nfim1 2206 . . . 4 𝑦(𝜑𝜓)
4 cbv1.1 . . . . 5 𝑥𝜑
5 cbv1.4 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
64, 5nfim1 2206 . . . 4 𝑥(𝜑𝜒)
7 cbv1.5 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
87com12 32 . . . . 5 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
98a2d 29 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) → (𝜑𝜒)))
103, 6, 9cbv3 2402 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑦(𝜑𝜒))
11419.21 2214 . . 3 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
12119.21 2214 . . 3 (∀𝑦(𝜑𝜒) ↔ (𝜑 → ∀𝑦𝜒))
1310, 11, 123imtr3i 280 . 2 ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑦𝜒))
1413pm2.86i 109 1 (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1622  wnf 1849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1846  df-nf 1851
This theorem is referenced by:  cbv1h  2405
  Copyright terms: Public domain W3C validator