MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvcsb Structured version   Visualization version   GIF version

Theorem cbvcsb 3503
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvcsb.1 𝑦𝐶
cbvcsb.2 𝑥𝐷
cbvcsb.3 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
cbvcsb 𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷

Proof of Theorem cbvcsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvcsb.1 . . . . 5 𝑦𝐶
21nfcri 2744 . . . 4 𝑦 𝑧𝐶
3 cbvcsb.2 . . . . 5 𝑥𝐷
43nfcri 2744 . . . 4 𝑥 𝑧𝐷
5 cbvcsb.3 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
65eleq2d 2672 . . . 4 (𝑥 = 𝑦 → (𝑧𝐶𝑧𝐷))
72, 4, 6cbvsbc 3430 . . 3 ([𝐴 / 𝑥]𝑧𝐶[𝐴 / 𝑦]𝑧𝐷)
87abbii 2725 . 2 {𝑧[𝐴 / 𝑥]𝑧𝐶} = {𝑧[𝐴 / 𝑦]𝑧𝐷}
9 df-csb 3499 . 2 𝐴 / 𝑥𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐶}
10 df-csb 3499 . 2 𝐴 / 𝑦𝐷 = {𝑧[𝐴 / 𝑦]𝑧𝐷}
118, 9, 103eqtr4i 2641 1 𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  {cab 2595  wnfc 2737  [wsbc 3401  csb 3498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-sbc 3402  df-csb 3499
This theorem is referenced by:  cbvcsbv  3504  cbvsum  14219  cbvprod  14430  measiuns  29413  poimirlem26  32401
  Copyright terms: Public domain W3C validator