MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvcsbv Structured version   Visualization version   GIF version

Theorem cbvcsbv 3504
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvcsbv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvcsbv 𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvcsbv
StepHypRef Expression
1 nfcv 2750 . 2 𝑦𝐵
2 nfcv 2750 . 2 𝑥𝐶
3 cbvcsbv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvcsb 3503 1 𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  csb 3498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-sbc 3402  df-csb 3499
This theorem is referenced by:  pmatcollpw3lem  20349  poimirlem27  32402  cdleme40v  34571
  Copyright terms: Public domain W3C validator