Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisj Structured version   Visualization version   GIF version

Theorem cbvdisj 4662
 Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
cbvdisj.1 𝑦𝐵
cbvdisj.2 𝑥𝐶
cbvdisj.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisj (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvdisj.1 . . . . 5 𝑦𝐵
21nfcri 2787 . . . 4 𝑦 𝑧𝐵
3 cbvdisj.2 . . . . 5 𝑥𝐶
43nfcri 2787 . . . 4 𝑥 𝑧𝐶
5 cbvdisj.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2716 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrmo 3200 . . 3 (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐴 𝑧𝐶)
87albii 1787 . 2 (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
9 df-disj 4653 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
10 df-disj 4653 . 2 (Disj 𝑦𝐴 𝐶 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
118, 9, 103bitr4i 292 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1521   = wceq 1523   ∈ wcel 2030  Ⅎwnfc 2780  ∃*wrmo 2944  Disj wdisj 4652 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-disj 4653 This theorem is referenced by:  cbvdisjv  4663  disjors  4667  disjxiun  4681  disjxiunOLD  4682  volfiniun  23361  voliun  23368  carsggect  30508  omsmeas  30513  disjf1  39683  disjrnmpt2  39689  fsumiunss  40125  sge0iunmpt  40953  iundjiun  40995  meadjiun  41001
 Copyright terms: Public domain W3C validator