MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvitg Structured version   Visualization version   GIF version

Theorem cbvitg 24303
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
cbvitg.1 (𝑥 = 𝑦𝐵 = 𝐶)
cbvitg.2 𝑦𝐵
cbvitg.3 𝑥𝐶
Assertion
Ref Expression
cbvitg 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1906 . . . . . . . . 9 𝑦 𝑥𝐴
2 nfcv 2974 . . . . . . . . . 10 𝑦0
3 nfcv 2974 . . . . . . . . . 10 𝑦
4 nfcv 2974 . . . . . . . . . . 11 𝑦
5 cbvitg.2 . . . . . . . . . . . 12 𝑦𝐵
6 nfcv 2974 . . . . . . . . . . . 12 𝑦 /
7 nfcv 2974 . . . . . . . . . . . 12 𝑦(i↑𝑘)
85, 6, 7nfov 7175 . . . . . . . . . . 11 𝑦(𝐵 / (i↑𝑘))
94, 8nffv 6673 . . . . . . . . . 10 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
102, 3, 9nfbr 5104 . . . . . . . . 9 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
111, 10nfan 1891 . . . . . . . 8 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1211, 9, 2nfif 4492 . . . . . . 7 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
13 nfv 1906 . . . . . . . . 9 𝑥 𝑦𝐴
14 nfcv 2974 . . . . . . . . . 10 𝑥0
15 nfcv 2974 . . . . . . . . . 10 𝑥
16 nfcv 2974 . . . . . . . . . . 11 𝑥
17 cbvitg.3 . . . . . . . . . . . 12 𝑥𝐶
18 nfcv 2974 . . . . . . . . . . . 12 𝑥 /
19 nfcv 2974 . . . . . . . . . . . 12 𝑥(i↑𝑘)
2017, 18, 19nfov 7175 . . . . . . . . . . 11 𝑥(𝐶 / (i↑𝑘))
2116, 20nffv 6673 . . . . . . . . . 10 𝑥(ℜ‘(𝐶 / (i↑𝑘)))
2214, 15, 21nfbr 5104 . . . . . . . . 9 𝑥0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))
2313, 22nfan 1891 . . . . . . . 8 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
2423, 21, 14nfif 4492 . . . . . . 7 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
25 eleq1w 2892 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
26 cbvitg.1 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝐶)
2726fvoveq1d 7167 . . . . . . . . . 10 (𝑥 = 𝑦 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
2827breq2d 5069 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))))
2925, 28anbi12d 630 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))))
3029, 27ifbieq1d 4486 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3112, 24, 30cbvmpt 5158 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3231a1i 11 . . . . 5 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
3332fveq2d 6667 . . . 4 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
3433oveq2d 7161 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
3534sumeq2i 15044 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
36 eqid 2818 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
3736dfitg 24297 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
38 eqid 2818 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
3938dfitg 24297 . 2 𝐴𝐶 d𝑦 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4035, 37, 393eqtr4i 2851 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wnfc 2958  ifcif 4463   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  ici 10527   · cmul 10530  cle 10664   / cdiv 11285  3c3 11681  ...cfz 12880  cexp 13417  cre 14444  Σcsu 15030  2citg2 24144  citg 24146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-seq 13358  df-sum 15031  df-itg 24151
This theorem is referenced by:  cbvitgv  24304  itgmpt  24310  itgfsum  24354  itgabs  24362  cbvditg  24379  itgparts  24571  itgsubstlem  24572  itgulm2  24924  itgabsnc  34842
  Copyright terms: Public domain W3C validator