MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1 Structured version   Visualization version   GIF version

Theorem cbvopab1 5142
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2389. See cbvopab1g 5143 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
Hypotheses
Ref Expression
cbvopab1.1 𝑧𝜑
cbvopab1.2 𝑥𝜓
cbvopab1.3 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cbvopab1
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
2 nfv 1914 . . . . . . 7 𝑥 𝑤 = ⟨𝑣, 𝑦
3 nfs1v 2159 . . . . . . 7 𝑥[𝑣 / 𝑥]𝜑
42, 3nfan 1899 . . . . . 6 𝑥(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
54nfex 2342 . . . . 5 𝑥𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
6 opeq1 4806 . . . . . . . 8 (𝑥 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑣, 𝑦⟩)
76eqeq2d 2835 . . . . . . 7 (𝑥 = 𝑣 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑣, 𝑦⟩))
8 sbequ12 2252 . . . . . . 7 (𝑥 = 𝑣 → (𝜑 ↔ [𝑣 / 𝑥]𝜑))
97, 8anbi12d 632 . . . . . 6 (𝑥 = 𝑣 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
109exbidv 1921 . . . . 5 (𝑥 = 𝑣 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
111, 5, 10cbvexv1 2361 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑))
12 nfv 1914 . . . . . . 7 𝑧 𝑤 = ⟨𝑣, 𝑦
13 cbvopab1.1 . . . . . . . 8 𝑧𝜑
1413nfsbv 2348 . . . . . . 7 𝑧[𝑣 / 𝑥]𝜑
1512, 14nfan 1899 . . . . . 6 𝑧(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
1615nfex 2342 . . . . 5 𝑧𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
17 nfv 1914 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)
18 opeq1 4806 . . . . . . . 8 (𝑣 = 𝑧 → ⟨𝑣, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
1918eqeq2d 2835 . . . . . . 7 (𝑣 = 𝑧 → (𝑤 = ⟨𝑣, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
20 cbvopab1.2 . . . . . . . 8 𝑥𝜓
21 cbvopab1.3 . . . . . . . 8 (𝑥 = 𝑧 → (𝜑𝜓))
2220, 21sbhypf 3555 . . . . . . 7 (𝑣 = 𝑧 → ([𝑣 / 𝑥]𝜑𝜓))
2319, 22anbi12d 632 . . . . . 6 (𝑣 = 𝑧 → ((𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2423exbidv 1921 . . . . 5 (𝑣 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2516, 17, 24cbvexv1 2361 . . . 4 (∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2611, 25bitri 277 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2726abbii 2889 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
28 df-opab 5132 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
29 df-opab 5132 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
3027, 28, 293eqtr4i 2857 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wnf 1783  [wsb 2068  {cab 2802  cop 4576  {copab 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-opab 5132
This theorem is referenced by:  cbvopab1v  5146  cbvmptf  5168  phpreu  34880  poimirlem26  34922  mbfposadd  34943
  Copyright terms: Public domain W3C validator