MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrab Structured version   Visualization version   GIF version

Theorem cbvrab 3170
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvrab.1 𝑥𝐴
cbvrab.2 𝑦𝐴
cbvrab.3 𝑦𝜑
cbvrab.4 𝑥𝜓
cbvrab.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrab {𝑥𝐴𝜑} = {𝑦𝐴𝜓}

Proof of Theorem cbvrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1829 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrab.1 . . . . . 6 𝑥𝐴
32nfcri 2744 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2424 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1815 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1 2675 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2096 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 742 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvab 2732 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrab.2 . . . . . 6 𝑦𝐴
1110nfcri 2744 . . . . 5 𝑦 𝑧𝐴
12 cbvrab.3 . . . . . 6 𝑦𝜑
1312nfsb 2427 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1815 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1829 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1 2675 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2363 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrab.4 . . . . . . 7 𝑥𝜓
19 cbvrab.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbie 2395 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20syl6bb 274 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 742 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvab 2732 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2631 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 2904 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 2904 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2641 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wnf 1698  [wsb 1866  wcel 1976  {cab 2595  wnfc 2737  {crab 2899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-rab 2904
This theorem is referenced by:  cbvrabv  3171  elrabsf  3440  tfis  6923  cantnflem1  8446  scottexs  8610  scott0s  8611  elmptrab  21382  bnj1534  29983  scottexf  32942  scott0f  32943  eq0rabdioph  36154  rexrabdioph  36172  rexfrabdioph  36173  elnn0rabdioph  36181  dvdsrabdioph  36188  binomcxplemdvsum  37372  fnlimcnv  38531  fnlimabslt  38543  stoweidlem34  38724  stoweidlem59  38749  pimltmnf2  39385  pimgtpnf2  39391  pimltpnf2  39397  issmff  39417  smfpimltxrmpt  39442  smfpreimagtf  39451  smflim  39460  smfpimgtxr  39463  smfpimgtxrmpt  39467
  Copyright terms: Public domain W3C validator