Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrmov Structured version   Visualization version   GIF version

Theorem cbvrmov 3172
 Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
cbvralv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmov (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrmov
StepHypRef Expression
1 nfv 1842 . 2 𝑦𝜑
2 nfv 1842 . 2 𝑥𝜓
3 cbvralv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrmo 3168 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∃*wrmo 2914 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator