![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvsbc | Structured version Visualization version GIF version |
Description: Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
cbvsbc.1 | ⊢ Ⅎ𝑦𝜑 |
cbvsbc.2 | ⊢ Ⅎ𝑥𝜓 |
cbvsbc.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvsbc | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbc.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvsbc.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvsbc.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvab 2872 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
5 | 4 | eleq2i 2819 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
6 | df-sbc 3565 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
7 | df-sbc 3565 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
8 | 5, 6, 7 | 3bitr4i 292 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1845 ∈ wcel 2127 {cab 2734 [wsbc 3564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-sbc 3565 |
This theorem is referenced by: cbvsbcv 3594 cbvcsb 3667 |
Copyright terms: Public domain | W3C validator |