Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat0 Structured version   Visualization version   GIF version

Theorem ccat0 13548
 Description: The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.)
Assertion
Ref Expression
ccat0 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))

Proof of Theorem ccat0
StepHypRef Expression
1 ccatcl 13546 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 hasheq0 13346 . . 3 ((𝑆 ++ 𝑇) ∈ Word 𝐵 → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 ++ 𝑇) = ∅))
31, 2syl 17 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 ++ 𝑇) = ∅))
4 ccatlen 13547 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
54eqeq1d 2762 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ ((♯‘𝑆) + (♯‘𝑇)) = 0))
6 lencl 13510 . . . . 5 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
7 nn0re 11493 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℝ)
8 nn0ge0 11510 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → 0 ≤ (♯‘𝑆))
97, 8jca 555 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)))
106, 9syl 17 . . . 4 (𝑆 ∈ Word 𝐵 → ((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)))
11 lencl 13510 . . . . 5 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0re 11493 . . . . . 6 ((♯‘𝑇) ∈ ℕ0 → (♯‘𝑇) ∈ ℝ)
13 nn0ge0 11510 . . . . . 6 ((♯‘𝑇) ∈ ℕ0 → 0 ≤ (♯‘𝑇))
1412, 13jca 555 . . . . 5 ((♯‘𝑇) ∈ ℕ0 → ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇)))
1511, 14syl 17 . . . 4 (𝑇 ∈ Word 𝐵 → ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇)))
16 add20 10732 . . . 4 ((((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)) ∧ ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇))) → (((♯‘𝑆) + (♯‘𝑇)) = 0 ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
1710, 15, 16syl2an 495 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) = 0 ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
18 hasheq0 13346 . . . 4 (𝑆 ∈ Word 𝐵 → ((♯‘𝑆) = 0 ↔ 𝑆 = ∅))
19 hasheq0 13346 . . . 4 (𝑇 ∈ Word 𝐵 → ((♯‘𝑇) = 0 ↔ 𝑇 = ∅))
2018, 19bi2anan9 953 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0) ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
215, 17, 203bitrd 294 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
223, 21bitr3d 270 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∅c0 4058   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℝcr 10127  0cc0 10128   + caddc 10131   ≤ cle 10267  ℕ0cn0 11484  ♯chash 13311  Word cword 13477   ++ cconcat 13479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-concat 13487 This theorem is referenced by:  clwwlkccat  27113  clwwlkwwlksb  27184
 Copyright terms: Public domain W3C validator