MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat1st1st Structured version   Visualization version   GIF version

Theorem ccat1st1st 13978
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
ccat1st1st (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))

Proof of Theorem ccat1st1st
StepHypRef Expression
1 hasheq0 13718 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
21biimpa 479 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
3 s1cli 13953 . . . . . . 7 ⟨“∅”⟩ ∈ Word V
4 ccatlid 13934 . . . . . . 7 (⟨“∅”⟩ ∈ Word V → (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩)
53, 4ax-mp 5 . . . . . 6 (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩
65fveq1i 6666 . . . . 5 ((∅ ++ ⟨“∅”⟩)‘0) = (⟨“∅”⟩‘0)
7 0ex 5204 . . . . . 6 ∅ ∈ V
8 s1fv 13958 . . . . . 6 (∅ ∈ V → (⟨“∅”⟩‘0) = ∅)
97, 8ax-mp 5 . . . . 5 (⟨“∅”⟩‘0) = ∅
106, 9eqtri 2844 . . . 4 ((∅ ++ ⟨“∅”⟩)‘0) = ∅
11 id 22 . . . . . 6 (𝑊 = ∅ → 𝑊 = ∅)
12 fveq1 6664 . . . . . . . 8 (𝑊 = ∅ → (𝑊‘0) = (∅‘0))
13 0fv 6704 . . . . . . . 8 (∅‘0) = ∅
1412, 13syl6eq 2872 . . . . . . 7 (𝑊 = ∅ → (𝑊‘0) = ∅)
1514s1eqd 13949 . . . . . 6 (𝑊 = ∅ → ⟨“(𝑊‘0)”⟩ = ⟨“∅”⟩)
1611, 15oveq12d 7168 . . . . 5 (𝑊 = ∅ → (𝑊 ++ ⟨“(𝑊‘0)”⟩) = (∅ ++ ⟨“∅”⟩))
1716fveq1d 6667 . . . 4 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = ((∅ ++ ⟨“∅”⟩)‘0))
1810, 17, 143eqtr4a 2882 . . 3 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
192, 18syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
201necon3bid 3060 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
2120biimpa 479 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅)
22 lennncl 13878 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2321, 22syldan 593 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
24 lbfzo0 13071 . . . 4 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
2523, 24sylibr 236 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
26 ccats1val1 13975 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2725, 26syldan 593 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2819, 27pm2.61dane 3104 1 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  c0 4291  cfv 6350  (class class class)co 7150  0cc0 10531  cn 11632  ..^cfzo 13027  chash 13684  Word cword 13855   ++ cconcat 13916  ⟨“cs1 13943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944
This theorem is referenced by:  clwwlknonwwlknonb  27879
  Copyright terms: Public domain W3C validator