MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatco Structured version   Visualization version   GIF version

Theorem ccatco 13801
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
ccatco ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))

Proof of Theorem ccatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lenco 13798 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
213adant2 1126 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
3 lenco 13798 . . . . . . 7 ((𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
433adant1 1125 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
52, 4oveq12d 6832 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇))) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 6830 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
76mpteq1d 4890 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
82oveq2d 6830 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
98adantr 472 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
109eleq2d 2825 . . . . . 6 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘(𝐹𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1110ifbid 4252 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))))
12 wrdf 13516 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
13123ad2ant1 1128 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1413adantr 472 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
15 ffn 6206 . . . . . . . . 9 (𝑆:(0..^(♯‘𝑆))⟶𝐴𝑆 Fn (0..^(♯‘𝑆)))
1614, 15syl 17 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆 Fn (0..^(♯‘𝑆)))
17 fvco2 6436 . . . . . . . 8 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
1816, 17sylan 489 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
19 iftrue 4236 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
2019adantl 473 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
2118, 20eqtr4d 2797 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
22 wrdf 13516 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴𝑇:(0..^(♯‘𝑇))⟶𝐴)
23223ad2ant2 1129 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2423ad2antrr 764 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
25 ffn 6206 . . . . . . . . 9 (𝑇:(0..^(♯‘𝑇))⟶𝐴𝑇 Fn (0..^(♯‘𝑇)))
2624, 25syl 17 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇 Fn (0..^(♯‘𝑇)))
27 lencl 13530 . . . . . . . . . . . . 13 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
2827nn0zd 11692 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℤ)
29283ad2ant1 1128 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑆) ∈ ℤ)
30 fzospliti 12714 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑆) ∈ ℤ) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3130ancoms 468 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℤ ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3229, 31sylan 489 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3332orcanai 990 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
34 lencl 13530 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℕ0)
3534nn0zd 11692 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℤ)
36353ad2ant2 1129 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑇) ∈ ℤ)
3736ad2antrr 764 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℤ)
38 fzosubel3 12743 . . . . . . . . 9 ((𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑇) ∈ ℤ) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
3933, 37, 38syl2anc 696 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
40 fvco2 6436 . . . . . . . 8 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4126, 39, 40syl2anc 696 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
422oveq2d 6830 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 − (♯‘(𝐹𝑆))) = (𝑥 − (♯‘𝑆)))
4342fveq2d 6357 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
4443ad2antrr 764 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
45 iffalse 4239 . . . . . . . 8 𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4645adantl 473 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4741, 44, 463eqtr4d 2804 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4821, 47ifeqda 4265 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4911, 48eqtrd 2794 . . . 4 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
5049mpteq2dva 4896 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
517, 50eqtr2d 2795 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
5214ffvelrnda 6523 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐴)
5324, 39ffvelrnd 6524 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐴)
5452, 53ifclda 4264 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐴)
55 ccatfval 13565 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
56553adant3 1127 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
57 simp3 1133 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
5857feqmptd 6412 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
59 fveq2 6353 . . . 4 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
60 fvif 6366 . . . 4 (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
6159, 60syl6eq 2810 . . 3 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
6254, 56, 58, 61fmptco 6560 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
63 ffun 6209 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
64633ad2ant3 1130 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → Fun 𝐹)
65 simp1 1131 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆 ∈ Word 𝐴)
66 cofunexg 7296 . . . 4 ((Fun 𝐹𝑆 ∈ Word 𝐴) → (𝐹𝑆) ∈ V)
6764, 65, 66syl2anc 696 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑆) ∈ V)
68 simp2 1132 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇 ∈ Word 𝐴)
69 cofunexg 7296 . . . 4 ((Fun 𝐹𝑇 ∈ Word 𝐴) → (𝐹𝑇) ∈ V)
7064, 68, 69syl2anc 696 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑇) ∈ V)
71 ccatfval 13565 . . 3 (((𝐹𝑆) ∈ V ∧ (𝐹𝑇) ∈ V) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7267, 70, 71syl2anc 696 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7351, 62, 723eqtr4d 2804 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  Vcvv 3340  ifcif 4230  cmpt 4881  ccom 5270  Fun wfun 6043   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  0cc0 10148   + caddc 10151  cmin 10478  cz 11589  ..^cfzo 12679  chash 13331  Word cword 13497   ++ cconcat 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507
This theorem is referenced by:  cats1co  13821  frmdgsum  17620  frmdup1  17622  efginvrel2  18360  frgpuplem  18405  frgpup1  18408  mrsubccat  31743
  Copyright terms: Public domain W3C validator