MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlid Structured version   Visualization version   GIF version

Theorem ccatlid 13932
Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
ccatlid (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)

Proof of Theorem ccatlid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrd0 13881 . . . 4 ∅ ∈ Word 𝐵
2 ccatvalfn 13927 . . . 4 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
31, 2mpan 688 . . 3 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
4 hash0 13720 . . . . . . . 8 (♯‘∅) = 0
54oveq1i 7158 . . . . . . 7 ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆))
6 lencl 13875 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
76nn0cnd 11949 . . . . . . . 8 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
87addid2d 10833 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆))
95, 8syl5eq 2866 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆))
109eqcomd 2825 . . . . 5 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆)))
1110oveq2d 7164 . . . 4 (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆))))
1211fneq2d 6440 . . 3 (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))))
133, 12mpbird 259 . 2 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆)))
14 wrdfn 13868 . 2 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
154a1i 11 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0)
1615, 9oveq12d 7166 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆)))
1716eleq2d 2896 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1817biimpar 480 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))))
19 ccatval2 13924 . . . . 5 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
201, 19mp3an1 1442 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
2118, 20syldan 593 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
224oveq2i 7159 . . . . 5 (𝑥 − (♯‘∅)) = (𝑥 − 0)
23 elfzoelz 13030 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ)
2423adantl 484 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ)
2524zcnd 12080 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ)
2625subid1d 10978 . . . . 5 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥)
2722, 26syl5eq 2866 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥)
2827fveq2d 6667 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆𝑥))
2921, 28eqtrd 2854 . 2 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆𝑥))
3013, 14, 29eqfnfvd 6798 1 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  c0 4289   Fn wfn 6343  cfv 6348  (class class class)co 7148  0cc0 10529   + caddc 10532  cmin 10862  cz 11973  ..^cfzo 13025  chash 13682  Word cword 13853   ++ cconcat 13914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915
This theorem is referenced by:  ccatidid  13936  ccat1st1st  13976  swrdccat  14089  s0s1  14276  gsumccatOLD  17997  gsumccat  17998  frmdmnd  18016  frmd0  18017  efgcpbl2  18875  frgp0  18878  frgpnabllem1  18985  signstfvneq0  31835  lpadlen1  31943
  Copyright terms: Public domain W3C validator