MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth Structured version   Visualization version   GIF version

Theorem ccatopth 13403
Description: An opth 4910-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
ccatopth (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 6612 . . . 4 ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩))
2 swrdccat1 13390 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = 𝐴)
323ad2ant1 1080 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = 𝐴)
4 simp3 1061 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → (#‘𝐴) = (#‘𝐶))
54opeq2d 4382 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ⟨0, (#‘𝐴)⟩ = ⟨0, (#‘𝐶)⟩)
65oveq2d 6621 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩) = ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐶)⟩))
7 swrdccat1 13390 . . . . . . 7 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐶)⟩) = 𝐶)
873ad2ant2 1081 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐶)⟩) = 𝐶)
96, 8eqtrd 2660 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩) = 𝐶)
103, 9eqeq12d 2641 . . . 4 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → (((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩) ↔ 𝐴 = 𝐶))
111, 10syl5ib 234 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐴 = 𝐶))
12 simpr 477 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
13 simpl3 1064 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘𝐴) = (#‘𝐶))
1412fveq2d 6154 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘(𝐴 ++ 𝐵)) = (#‘(𝐶 ++ 𝐷)))
15 simpl1 1062 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋))
16 ccatlen 13294 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
1715, 16syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
18 simpl2 1063 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋))
19 ccatlen 13294 . . . . . . . . 9 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → (#‘(𝐶 ++ 𝐷)) = ((#‘𝐶) + (#‘𝐷)))
2018, 19syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘(𝐶 ++ 𝐷)) = ((#‘𝐶) + (#‘𝐷)))
2114, 17, 203eqtr3d 2668 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((#‘𝐴) + (#‘𝐵)) = ((#‘𝐶) + (#‘𝐷)))
2213, 21opeq12d 4383 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩ = ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩)
2312, 22oveq12d 6623 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩) = ((𝐶 ++ 𝐷) substr ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩))
24 swrdccat2 13391 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) substr ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩) = 𝐵)
2515, 24syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩) = 𝐵)
26 swrdccat2 13391 . . . . . 6 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) substr ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩) = 𝐷)
2718, 26syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐶 ++ 𝐷) substr ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩) = 𝐷)
2823, 25, 273eqtr3d 2668 . . . 4 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → 𝐵 = 𝐷)
2928ex 450 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐵 = 𝐷))
3011, 29jcad 555 . 2 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
31 oveq12 6614 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
3230, 31impbid1 215 1 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  cop 4159  cfv 5850  (class class class)co 6605  0cc0 9881   + caddc 9884  #chash 13054  Word cword 13225   ++ cconcat 13227   substr csubstr 13229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-concat 13235  df-substr 13237
This theorem is referenced by:  ccatopth2  13404  ccatlcan  13405  splval2  13440  s2eq2s1eq  13612  efgredleme  18072  efgredlemc  18074
  Copyright terms: Public domain W3C validator