MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatrn Structured version   Visualization version   GIF version

Theorem ccatrn 13482
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatrn ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))

Proof of Theorem ccatrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatvalfn 13474 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
2 lencl 13431 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
32adantr 472 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℕ0)
4 nn0uz 11836 . . . . . . . . . . 11 0 = (ℤ‘0)
53, 4syl6eleq 2813 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
63nn0zd 11593 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℤ)
7 uzid 11815 . . . . . . . . . . . 12 ((♯‘𝑆) ∈ ℤ → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
86, 7syl 17 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
9 lencl 13431 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
109adantl 473 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑇) ∈ ℕ0)
11 uzaddcl 11858 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
128, 10, 11syl2anc 696 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
13 elfzuzb 12450 . . . . . . . . . 10 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
145, 12, 13sylanbrc 701 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
15 fzosplit 12616 . . . . . . . . 9 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1614, 15syl 17 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1716eleq2d 2789 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ 𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
18 elun 3861 . . . . . . 7 (𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1917, 18syl6bb 276 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
20 ccatval1 13470 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
21203expa 1111 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
22 ssun1 3884 . . . . . . . . . 10 ran 𝑆 ⊆ (ran 𝑆 ∪ ran 𝑇)
23 simpl 474 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 ∈ Word 𝐵)
24 wrdf 13417 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵𝑆:(0..^(♯‘𝑆))⟶𝐵)
25 ffn 6158 . . . . . . . . . . . 12 (𝑆:(0..^(♯‘𝑆))⟶𝐵𝑆 Fn (0..^(♯‘𝑆)))
2623, 24, 253syl 18 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆)))
27 fnfvelrn 6471 . . . . . . . . . . 11 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2826, 27sylan 489 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2922, 28sseldi 3707 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
3021, 29eqeltrd 2803 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
31 ccatval2 13471 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
32313expa 1111 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
33 ssun2 3885 . . . . . . . . . 10 ran 𝑇 ⊆ (ran 𝑆 ∪ ran 𝑇)
34 simpr 479 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 ∈ Word 𝐵)
35 wrdf 13417 . . . . . . . . . . . . 13 (𝑇 ∈ Word 𝐵𝑇:(0..^(♯‘𝑇))⟶𝐵)
36 ffn 6158 . . . . . . . . . . . . 13 (𝑇:(0..^(♯‘𝑇))⟶𝐵𝑇 Fn (0..^(♯‘𝑇)))
3734, 35, 363syl 18 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
3837adantr 472 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑇 Fn (0..^(♯‘𝑇)))
39 elfzouz 12589 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ (ℤ‘(♯‘𝑆)))
4039adantl 473 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (ℤ‘(♯‘𝑆)))
41 uznn0sub 11833 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℤ‘(♯‘𝑆)) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
4240, 41syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
4342, 4syl6eleq 2813 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
4410nn0zd 11593 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑇) ∈ ℤ)
4544adantr 472 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℤ)
46 elfzolt2 12594 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
4746adantl 473 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
48 elfzoelz 12585 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℤ)
4948adantl 473 . . . . . . . . . . . . . . 15 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ℤ)
5049zred 11595 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ℝ)
516adantr 472 . . . . . . . . . . . . . . 15 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑆) ∈ ℤ)
5251zred 11595 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑆) ∈ ℝ)
5345zred 11595 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℝ)
5450, 52, 53ltsubadd2d 10738 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑥 − (♯‘𝑆)) < (♯‘𝑇) ↔ 𝑥 < ((♯‘𝑆) + (♯‘𝑇))))
5547, 54mpbird 247 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) < (♯‘𝑇))
56 elfzo2 12588 . . . . . . . . . . . 12 ((𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)) ↔ ((𝑥 − (♯‘𝑆)) ∈ (ℤ‘0) ∧ (♯‘𝑇) ∈ ℤ ∧ (𝑥 − (♯‘𝑆)) < (♯‘𝑇)))
5743, 45, 55, 56syl3anbrc 1383 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
58 fnfvelrn 6471 . . . . . . . . . . 11 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5938, 57, 58syl2anc 696 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
6033, 59sseldi 3707 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ (ran 𝑆 ∪ ran 𝑇))
6132, 60eqeltrd 2803 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
6230, 61jaodan 861 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
6362ex 449 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
6419, 63sylbid 230 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
6564ralrimiv 3067 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
66 ffnfv 6503 . . . 4 ((𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇) ↔ ((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
671, 65, 66sylanbrc 701 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇))
68 frn 6166 . . 3 ((𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇) → ran (𝑆 ++ 𝑇) ⊆ (ran 𝑆 ∪ ran 𝑇))
6967, 68syl 17 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) ⊆ (ran 𝑆 ∪ ran 𝑇))
701adantr 472 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
71 fzoss2 12611 . . . . . . . . . 10 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
7212, 71syl 17 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
7372sselda 3709 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
74 fnfvelrn 6471 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
7570, 73, 74syl2anc 696 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
7621, 75eqeltrrd 2804 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
7776ralrimiva 3068 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
78 ffnfv 6503 . . . . 5 (𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇) ↔ (𝑆 Fn (0..^(♯‘𝑆)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇)))
7926, 77, 78sylanbrc 701 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇))
80 frn 6166 . . . 4 (𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇) → ran 𝑆 ⊆ ran (𝑆 ++ 𝑇))
8179, 80syl 17 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑆 ⊆ ran (𝑆 ++ 𝑇))
82 ccatval3 13472 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
83823expa 1111 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
841adantr 472 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
85 elfzouz 12589 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ (ℤ‘0))
8685adantl 473 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ (ℤ‘0))
8786, 4syl6eleqr 2814 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℕ0)
883adantr 472 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℕ0)
8987, 88nn0addcld 11468 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ ℕ0)
9089, 4syl6eleq 2813 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
913, 10nn0addcld 11468 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
9291nn0zd 11593 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
9392adantr 472 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
9487nn0cnd 11466 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℂ)
9588nn0cnd 11466 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℂ)
9694, 95addcomd 10351 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
9787nn0red 11465 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℝ)
9810adantr 472 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑇) ∈ ℕ0)
9998nn0red 11465 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑇) ∈ ℝ)
10088nn0red 11465 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℝ)
101 elfzolt2 12594 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 < (♯‘𝑇))
102101adantl 473 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 < (♯‘𝑇))
10397, 99, 100, 102ltadd2dd 10309 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + 𝑥) < ((♯‘𝑆) + (♯‘𝑇)))
10496, 103eqbrtrd 4782 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇)))
105 elfzo2 12588 . . . . . . . . 9 ((𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ ((𝑥 + (♯‘𝑆)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ ∧ (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇))))
10690, 93, 104, 105syl3anbrc 1383 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
107 fnfvelrn 6471 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
10884, 106, 107syl2anc 696 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
10983, 108eqeltrrd 2804 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
110109ralrimiva 3068 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
111 ffnfv 6503 . . . . 5 (𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇) ↔ (𝑇 Fn (0..^(♯‘𝑇)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇)))
11237, 110, 111sylanbrc 701 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇))
113 frn 6166 . . . 4 (𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇) → ran 𝑇 ⊆ ran (𝑆 ++ 𝑇))
114112, 113syl 17 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑇 ⊆ ran (𝑆 ++ 𝑇))
11581, 114unssd 3897 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (ran 𝑆 ∪ ran 𝑇) ⊆ ran (𝑆 ++ 𝑇))
11669, 115eqssd 3726 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1596  wcel 2103  wral 3014  cun 3678  wss 3680   class class class wbr 4760  ran crn 5219   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  0cc0 10049   + caddc 10052   < clt 10187  cmin 10379  0cn0 11405  cz 11490  cuz 11800  ...cfz 12440  ..^cfzo 12580  chash 13232  Word cword 13398   ++ cconcat 13400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-hash 13233  df-word 13406  df-concat 13408
This theorem is referenced by:  mrsubvrs  31647
  Copyright terms: Public domain W3C validator