Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval2 Structured version   Visualization version   GIF version

Theorem ccatval2 13542
 Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
ccatval2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆))))

Proof of Theorem ccatval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 13537 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
213adant3 1126 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
3 eleq1 2819 . . . 4 (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆))))
4 fveq2 6344 . . . 4 (𝑥 = 𝐼 → (𝑆𝑥) = (𝑆𝐼))
5 oveq1 6812 . . . . 5 (𝑥 = 𝐼 → (𝑥 − (♯‘𝑆)) = (𝐼 − (♯‘𝑆)))
65fveq2d 6348 . . . 4 (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆))))
73, 4, 6ifbieq12d 4249 . . 3 (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))))
8 fzodisj 12688 . . . . . 6 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) = ∅
9 minel 4169 . . . . . 6 ((𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) = ∅) → ¬ 𝐼 ∈ (0..^(♯‘𝑆)))
108, 9mpan2 709 . . . . 5 (𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → ¬ 𝐼 ∈ (0..^(♯‘𝑆)))
11103ad2ant3 1129 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ¬ 𝐼 ∈ (0..^(♯‘𝑆)))
1211iffalsed 4233 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑇‘(𝐼 − (♯‘𝑆))))
137, 12sylan9eqr 2808 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑇‘(𝐼 − (♯‘𝑆))))
14 wrdfin 13501 . . . . . 6 (𝑆 ∈ Word 𝐵𝑆 ∈ Fin)
1514adantr 472 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 ∈ Fin)
16 hashcl 13331 . . . . 5 (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0)
17 fzoss1 12681 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
18 nn0uz 11907 . . . . . 6 0 = (ℤ‘0)
1917, 18eleq2s 2849 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
2015, 16, 193syl 18 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
2120sseld 3735 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))))
22213impia 1109 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
23 fvexd 6356 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝐼 − (♯‘𝑆))) ∈ V)
242, 13, 22, 23fvmptd 6442 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131  Vcvv 3332   ∩ cin 3706   ⊆ wss 3707  ∅c0 4050  ifcif 4222   ↦ cmpt 4873  ‘cfv 6041  (class class class)co 6805  Fincfn 8113  0cc0 10120   + caddc 10123   − cmin 10450  ℕ0cn0 11476  ℤ≥cuz 11871  ..^cfzo 12651  ♯chash 13303  Word cword 13469   ++ cconcat 13471 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479 This theorem is referenced by:  ccatval3  13543  ccatsymb  13546  ccatval21sw  13549  ccatlid  13550  ccatass  13552  ccatrn  13553  lswccatn0lsw  13555  ccats1val2  13593  ccat2s1p2  13596  ccatswrd  13648  swrdccatin12lem2  13681  swrdccatin12  13683  revccat  13707  cshwidxmod  13741  clwwlkccatlem  27104  ccatpfx  41911  pfxccatin12lem2  41926  pfxccatin12  41927
 Copyright terms: Public domain W3C validator