MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Structured version   Visualization version   GIF version

Theorem cctop 20858
Description: The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cctop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4490 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
2 ssrab2 3720 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴
3 sspwuni 4643 . . . . . . . . 9 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
42, 3mpbi 220 . . . . . . . 8 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴
51, 4syl6ss 3648 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦𝐴)
6 vuniex 6996 . . . . . . . 8 𝑦 ∈ V
76elpw 4197 . . . . . . 7 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
85, 7sylibr 224 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ 𝒫 𝐴)
9 uni0c 4496 . . . . . . . . . . 11 ( 𝑦 = ∅ ↔ ∀𝑧𝑦 𝑧 = ∅)
109notbii 309 . . . . . . . . . 10 𝑦 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
11 rexnal 3024 . . . . . . . . . 10 (∃𝑧𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
1210, 11bitr4i 267 . . . . . . . . 9 𝑦 = ∅ ↔ ∃𝑧𝑦 ¬ 𝑧 = ∅)
13 ssel2 3631 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
14 difeq2 3755 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
1514breq1d 4695 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑧) ≼ ω))
16 eqeq1 2655 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
1715, 16orbi12d 746 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
1817elrab 3396 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
1913, 18sylib 208 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)))
2019simprd 478 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))
2120ord 391 . . . . . . . . . . . . . 14 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ (𝐴𝑧) ≼ ω → 𝑧 = ∅))
2221con1d 139 . . . . . . . . . . . . 13 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ 𝑧 = ∅ → (𝐴𝑧) ≼ ω))
2322imp 444 . . . . . . . . . . . 12 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴𝑧) ≼ ω)
24 ctex 8012 . . . . . . . . . . . . . . 15 ((𝐴𝑧) ≼ ω → (𝐴𝑧) ∈ V)
2524adantl 481 . . . . . . . . . . . . . 14 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴𝑧) ∈ V)
26 simpllr 815 . . . . . . . . . . . . . . 15 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → 𝑧𝑦)
27 elssuni 4499 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧 𝑦)
28 sscon 3777 . . . . . . . . . . . . . . 15 (𝑧 𝑦 → (𝐴 𝑦) ⊆ (𝐴𝑧))
2926, 27, 283syl 18 . . . . . . . . . . . . . 14 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ⊆ (𝐴𝑧))
30 ssdomg 8043 . . . . . . . . . . . . . 14 ((𝐴𝑧) ∈ V → ((𝐴 𝑦) ⊆ (𝐴𝑧) → (𝐴 𝑦) ≼ (𝐴𝑧)))
3125, 29, 30sylc 65 . . . . . . . . . . . . 13 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ (𝐴𝑧))
32 domtr 8050 . . . . . . . . . . . . 13 (((𝐴 𝑦) ≼ (𝐴𝑧) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3331, 32sylancom 702 . . . . . . . . . . . 12 ((((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) ∧ (𝐴𝑧) ≼ ω) → (𝐴 𝑦) ≼ ω)
3423, 33mpdan 703 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 𝑦) ≼ ω)
3534exp31 629 . . . . . . . . . 10 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (𝑧𝑦 → (¬ 𝑧 = ∅ → (𝐴 𝑦) ≼ ω)))
3635rexlimdv 3059 . . . . . . . . 9 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (∃𝑧𝑦 ¬ 𝑧 = ∅ → (𝐴 𝑦) ≼ ω))
3712, 36syl5bi 232 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ 𝑦 = ∅ → (𝐴 𝑦) ≼ ω))
3837con1d 139 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → (¬ (𝐴 𝑦) ≼ ω → 𝑦 = ∅))
3938orrd 392 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅))
40 difeq2 3755 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴 𝑦))
4140breq1d 4695 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴 𝑦) ≼ ω))
42 eqeq1 2655 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
4341, 42orbi12d 746 . . . . . . 7 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅)))
4443elrab 3396 . . . . . 6 ( 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 𝑦) ≼ ω ∨ 𝑦 = ∅)))
458, 39, 44sylanbrc 699 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
4645ax-gen 1762 . . . 4 𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
47 difeq2 3755 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
4847breq1d 4695 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝑦) ≼ ω))
49 eqeq1 2655 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
5048, 49orbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
5150elrab 3396 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)))
52 ssinss1 3874 . . . . . . . . . 10 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
53 vex 3234 . . . . . . . . . . 11 𝑦 ∈ V
5453elpw 4197 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
5553inex1 4832 . . . . . . . . . . 11 (𝑦𝑧) ∈ V
5655elpw 4197 . . . . . . . . . 10 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5752, 54, 563imtr4i 281 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴 → (𝑦𝑧) ∈ 𝒫 𝐴)
5857ad2antrr 762 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → (𝑦𝑧) ∈ 𝒫 𝐴)
59 difindi 3914 . . . . . . . . . . . 12 (𝐴 ∖ (𝑦𝑧)) = ((𝐴𝑦) ∪ (𝐴𝑧))
60 unctb 9065 . . . . . . . . . . . 12 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴𝑦) ∪ (𝐴𝑧)) ≼ ω)
6159, 60syl5eqbr 4720 . . . . . . . . . . 11 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → (𝐴 ∖ (𝑦𝑧)) ≼ ω)
6261orcd 406 . . . . . . . . . 10 (((𝐴𝑦) ≼ ω ∧ (𝐴𝑧) ≼ ω) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
63 ineq1 3840 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝑧) = (∅ ∩ 𝑧))
64 0in 4002 . . . . . . . . . . . 12 (∅ ∩ 𝑧) = ∅
6563, 64syl6eq 2701 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑧) = ∅)
6665olcd 407 . . . . . . . . . 10 (𝑦 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
67 ineq2 3841 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑦𝑧) = (𝑦 ∩ ∅))
68 in0 4001 . . . . . . . . . . . 12 (𝑦 ∩ ∅) = ∅
6967, 68syl6eq 2701 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧) = ∅)
7069olcd 407 . . . . . . . . . 10 (𝑧 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7162, 66, 70ccase2 1008 . . . . . . . . 9 ((((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅) ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7271ad2ant2l 797 . . . . . . . 8 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅))
7358, 72jca 553 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ≼ ω ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ≼ ω ∨ 𝑧 = ∅))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7451, 18, 73syl2anb 495 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
75 difeq2 3755 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝐴𝑥) = (𝐴 ∖ (𝑦𝑧)))
7675breq1d 4695 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ (𝑦𝑧)) ≼ ω))
77 eqeq1 2655 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7876, 77orbi12d 746 . . . . . . 7 (𝑥 = (𝑦𝑧) → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
7978elrab 3396 . . . . . 6 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ≼ ω ∨ (𝑦𝑧) = ∅)))
8074, 79sylibr 224 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
8180rgen2a 3006 . . . 4 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}
8246, 81pm3.2i 470 . . 3 (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
83 pwexg 4880 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
84 rabexg 4844 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V)
85 istopg 20748 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8683, 84, 853syl 18 . . 3 (𝐴𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})))
8782, 86mpbiri 248 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top)
88 pwidg 4206 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
89 omex 8578 . . . . . . . 8 ω ∈ V
90890dom 8131 . . . . . . 7 ∅ ≼ ω
9190orci 404 . . . . . 6 (∅ ≼ ω ∨ 𝐴 = ∅)
9291a1i 11 . . . . 5 (𝐴𝑉 → (∅ ≼ ω ∨ 𝐴 = ∅))
93 difeq2 3755 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
94 difid 3981 . . . . . . . . 9 (𝐴𝐴) = ∅
9593, 94syl6eq 2701 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
9695breq1d 4695 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴𝑥) ≼ ω ↔ ∅ ≼ ω))
97 eqeq1 2655 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9896, 97orbi12d 746 . . . . . 6 (𝑥 = 𝐴 → (((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅) ↔ (∅ ≼ ω ∨ 𝐴 = ∅)))
9998elrab 3396 . . . . 5 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (∅ ≼ ω ∨ 𝐴 = ∅)))
10088, 92, 99sylanbrc 699 . . . 4 (𝐴𝑉𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
101 elssuni 4499 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
102100, 101syl 17 . . 3 (𝐴𝑉𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
1034a1i 11 . . 3 (𝐴𝑉 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ⊆ 𝐴)
104102, 103eqssd 3653 . 2 (𝐴𝑉𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)})
105 istopon 20765 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)}))
10687, 104, 105sylanbrc 699 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wal 1521   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468   class class class wbr 4685  cfv 5926  ωcom 7107  cdom 7995  Topctop 20746  TopOnctopon 20763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-card 8803  df-cda 9028  df-top 20747  df-topon 20764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator