![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cda1en | Structured version Visualization version GIF version |
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
cda1en | ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8155 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 𝐴 ≈ 𝐴) |
3 | ensn1g 8188 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1𝑜) | |
4 | 3 | ensymd 8174 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1𝑜 ≈ {𝐴}) |
5 | 4 | adantr 472 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 1𝑜 ≈ {𝐴}) |
6 | simpr 479 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
7 | disjsn 4390 | . . . 4 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
8 | 6, 7 | sylibr 224 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ∩ {𝐴}) = ∅) |
9 | cdaenun 9208 | . . 3 ⊢ ((𝐴 ≈ 𝐴 ∧ 1𝑜 ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 +𝑐 1𝑜) ≈ (𝐴 ∪ {𝐴})) | |
10 | 2, 5, 8, 9 | syl3anc 1477 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 +𝑐 1𝑜) ≈ (𝐴 ∪ {𝐴})) |
11 | df-suc 5890 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
12 | 10, 11 | syl6breqr 4846 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∪ cun 3713 ∩ cin 3714 ∅c0 4058 {csn 4321 class class class wbr 4804 suc csuc 5886 (class class class)co 6814 1𝑜c1o 7723 ≈ cen 8120 +𝑐 ccda 9201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1o 7730 df-er 7913 df-en 8124 df-cda 9202 |
This theorem is referenced by: pm110.643ALT 9212 pwsdompw 9238 |
Copyright terms: Public domain | W3C validator |