 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqab1 Structured version   Visualization version   GIF version

Theorem cdeqab1 3409
 Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cdeqab1
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 3403 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32cbvabv 2744 . 2 {𝑥𝜑} = {𝑦𝜓}
43cdeqth 3404 1 CondEq(𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜓})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1480  {cab 2607  CondEqwcdeq 3400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-cdeq 3401 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator