HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Visualization version   GIF version

Theorem cdj3lem1 28480
Description: A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj3lem1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem cdj3lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 3754 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴𝐵) ↔ (𝑤𝐴𝑤𝐵))
2 cdj1.2 . . . . . . . . . . . . . 14 𝐵S
3 neg1cn 10968 . . . . . . . . . . . . . 14 -1 ∈ ℂ
4 shmulcl 27262 . . . . . . . . . . . . . 14 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑤𝐵) → (-1 · 𝑤) ∈ 𝐵)
52, 3, 4mp3an12 1405 . . . . . . . . . . . . 13 (𝑤𝐵 → (-1 · 𝑤) ∈ 𝐵)
65anim2i 590 . . . . . . . . . . . 12 ((𝑤𝐴𝑤𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
71, 6sylbi 205 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝐵) → (𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵))
8 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm𝑦) = (norm𝑤))
98oveq1d 6539 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((norm𝑦) + (norm𝑧)) = ((norm𝑤) + (norm𝑧)))
10 oveq1 6531 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → (𝑦 + 𝑧) = (𝑤 + 𝑧))
1110fveq2d 6089 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (norm‘(𝑦 + 𝑧)) = (norm‘(𝑤 + 𝑧)))
1211oveq2d 6540 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑥 · (norm‘(𝑦 + 𝑧))) = (𝑥 · (norm‘(𝑤 + 𝑧))))
139, 12breq12d 4587 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) ↔ ((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧)))))
14 fveq2 6085 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm𝑧) = (norm‘(-1 · 𝑤)))
1514oveq2d 6540 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → ((norm𝑤) + (norm𝑧)) = ((norm𝑤) + (norm‘(-1 · 𝑤))))
16 oveq2 6532 . . . . . . . . . . . . . . 15 (𝑧 = (-1 · 𝑤) → (𝑤 + 𝑧) = (𝑤 + (-1 · 𝑤)))
1716fveq2d 6089 . . . . . . . . . . . . . 14 (𝑧 = (-1 · 𝑤) → (norm‘(𝑤 + 𝑧)) = (norm‘(𝑤 + (-1 · 𝑤))))
1817oveq2d 6540 . . . . . . . . . . . . 13 (𝑧 = (-1 · 𝑤) → (𝑥 · (norm‘(𝑤 + 𝑧))) = (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))))
1915, 18breq12d 4587 . . . . . . . . . . . 12 (𝑧 = (-1 · 𝑤) → (((norm𝑤) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑤 + 𝑧))) ↔ ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
2013, 19rspc2v 3289 . . . . . . . . . . 11 ((𝑤𝐴 ∧ (-1 · 𝑤) ∈ 𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
217, 20syl 17 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
2221adantl 480 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → ((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤))))))
23 cdj1.1 . . . . . . . . . . . 12 𝐴S
2423, 2shincli 27408 . . . . . . . . . . 11 (𝐴𝐵) ∈ S
2524sheli 27258 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ ℋ)
26 normneg 27188 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(-1 · 𝑤)) = (norm𝑤))
2726oveq2d 6540 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = ((norm𝑤) + (norm𝑤)))
28 normcl 27169 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℝ)
2928recnd 9921 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm𝑤) ∈ ℂ)
30292timesd 11119 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (2 · (norm𝑤)) = ((norm𝑤) + (norm𝑤)))
3127, 30eqtr4d 2643 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
3231adantl 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((norm𝑤) + (norm‘(-1 · 𝑤))) = (2 · (norm𝑤)))
33 hvnegid 27071 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℋ → (𝑤 + (-1 · 𝑤)) = 0)
3433fveq2d 6089 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = (norm‘0))
35 norm0 27172 . . . . . . . . . . . . . . . 16 (norm‘0) = 0
3634, 35syl6eq 2656 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → (norm‘(𝑤 + (-1 · 𝑤))) = 0)
3736oveq2d 6540 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (𝑥 · 0))
38 recn 9879 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3938mul01d 10083 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
4037, 39sylan9eqr 2662 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = 0)
41 2t0e0 11027 . . . . . . . . . . . . 13 (2 · 0) = 0
4240, 41syl6eqr 2658 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) = (2 · 0))
4332, 42breq12d 4587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
44 0re 9893 . . . . . . . . . . . . . . 15 0 ∈ ℝ
45 letri3 9971 . . . . . . . . . . . . . . 15 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
4628, 44, 45sylancl 692 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
47 normge0 27170 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℋ → 0 ≤ (norm𝑤))
4847biantrud 526 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ ((norm𝑤) ≤ 0 ∧ 0 ≤ (norm𝑤))))
49 2re 10934 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
50 2pos 10956 . . . . . . . . . . . . . . . . 17 0 < 2
5149, 50pm3.2i 469 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
52 lemul2 10722 . . . . . . . . . . . . . . . 16 (((norm𝑤) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5344, 51, 52mp3an23 1407 . . . . . . . . . . . . . . 15 ((norm𝑤) ∈ ℝ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5428, 53syl 17 . . . . . . . . . . . . . 14 (𝑤 ∈ ℋ → ((norm𝑤) ≤ 0 ↔ (2 · (norm𝑤)) ≤ (2 · 0)))
5546, 48, 543bitr2rd 295 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ (norm𝑤) = 0))
56 norm-i 27173 . . . . . . . . . . . . 13 (𝑤 ∈ ℋ → ((norm𝑤) = 0 ↔ 𝑤 = 0))
5755, 56bitrd 266 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5857adantl 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → ((2 · (norm𝑤)) ≤ (2 · 0) ↔ 𝑤 = 0))
5943, 58bitrd 266 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℋ) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
6025, 59sylan2 489 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (((norm𝑤) + (norm‘(-1 · 𝑤))) ≤ (𝑥 · (norm‘(𝑤 + (-1 · 𝑤)))) ↔ 𝑤 = 0))
6122, 60sylibd 227 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ (𝐴𝐵)) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → 𝑤 = 0))
6261impancom 454 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 = 0))
63 elch0 27298 . . . . . . 7 (𝑤 ∈ 0𝑤 = 0)
6462, 63syl6ibr 240 . . . . . 6 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝑤 ∈ (𝐴𝐵) → 𝑤 ∈ 0))
6564ssrdv 3570 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) ⊆ 0)
6665ex 448 . . . 4 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) ⊆ 0))
67 shle0 27488 . . . . 5 ((𝐴𝐵) ∈ S → ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0))
6824, 67ax-mp 5 . . . 4 ((𝐴𝐵) ⊆ 0 ↔ (𝐴𝐵) = 0)
6966, 68syl6ib 239 . . 3 (𝑥 ∈ ℝ → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧))) → (𝐴𝐵) = 0))
7069adantld 481 . 2 (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0))
7170rexlimiv 3005 1 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) + (norm𝑧)) ≤ (𝑥 · (norm‘(𝑦 + 𝑧)))) → (𝐴𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2892  wrex 2893  cin 3535  wss 3536   class class class wbr 4574  cfv 5787  (class class class)co 6524  cc 9787  cr 9788  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794   < clt 9927  cle 9928  -cneg 10115  2c2 10914  chil 26963   + cva 26964   · csm 26965  normcno 26967  0c0v 26968   S csh 26972  0c0h 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-hilex 27043  ax-hfvadd 27044  ax-hvcom 27045  ax-hv0cl 27047  ax-hvaddid 27048  ax-hfvmul 27049  ax-hvmulid 27050  ax-hvmulass 27051  ax-hvdistr1 27052  ax-hvdistr2 27053  ax-hvmul0 27054  ax-hfi 27123  ax-his1 27126  ax-his3 27128  ax-his4 27129
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-sup 8205  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-seq 12616  df-exp 12675  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-hnorm 27012  df-hvsub 27015  df-sh 27251  df-ch0 27297
This theorem is referenced by:  cdj3lem2b  28483  cdj3i  28487
  Copyright terms: Public domain W3C validator