Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb2 Structured version   Visualization version   GIF version

Theorem cdlemb2 35848
 Description: Given two atoms not under the fiducial (reference) co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemb2.l = (le‘𝐾)
cdlemb2.j = (join‘𝐾)
cdlemb2.a 𝐴 = (Atoms‘𝐾)
cdlemb2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemb2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟
Allowed substitution hint:   𝐻(𝑟)

Proof of Theorem cdlemb2
StepHypRef Expression
1 simp1l 1240 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
2 simp2ll 1307 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝐴)
3 simp2rl 1309 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑄𝐴)
4 simp1r 1241 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑊𝐻)
5 eqid 2760 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 cdlemb2.h . . . 4 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 35805 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
84, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑊 ∈ (Base‘𝐾))
9 simp3 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
10 eqid 2760 . . . 4 (1.‘𝐾) = (1.‘𝐾)
11 eqid 2760 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
1210, 11, 6lhp1cvr 35806 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
13123ad2ant1 1128 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
14 simp2lr 1308 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑃 𝑊)
15 simp2rr 1310 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑄 𝑊)
16 cdlemb2.l . . 3 = (le‘𝐾)
17 cdlemb2.j . . 3 = (join‘𝐾)
18 cdlemb2.a . . 3 𝐴 = (Atoms‘𝐾)
195, 16, 17, 10, 11, 18cdlemb 35601 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑃𝑄) ∧ (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
201, 2, 3, 8, 9, 13, 14, 15, 19syl323anc 1507 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  1.cp1 17259   ⋖ ccvr 35070  Atomscatm 35071  HLchlt 35158  LHypclh 35791 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-lhyp 35795 This theorem is referenced by:  cdlemd4  36009  cdlemd9  36014  cdleme25a  36161  cdleme25c  36163  cdleme25dN  36164  cdleme26ee  36168  cdlemefs32sn1aw  36222  cdleme43fsv1snlem  36228  cdleme41sn3a  36241  cdleme40m  36275  cdleme40n  36276  cdleme17d3  36304  cdlemeg46gfre  36340  cdleme50trn2  36359  cdlemb3  36414
 Copyright terms: Public domain W3C validator