Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb2 Structured version   Visualization version   GIF version

Theorem cdlemb2 34807
Description: Given two atoms not under the fiducial (reference) co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemb2.l = (le‘𝐾)
cdlemb2.j = (join‘𝐾)
cdlemb2.a 𝐴 = (Atoms‘𝐾)
cdlemb2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemb2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
Distinct variable groups:   𝐴,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟
Allowed substitution hint:   𝐻(𝑟)

Proof of Theorem cdlemb2
StepHypRef Expression
1 simp1l 1083 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
2 simp2ll 1126 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝐴)
3 simp2rl 1128 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑄𝐴)
4 simp1r 1084 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑊𝐻)
5 eqid 2621 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 cdlemb2.h . . . 4 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 34764 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
84, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑊 ∈ (Base‘𝐾))
9 simp3 1061 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
10 eqid 2621 . . . 4 (1.‘𝐾) = (1.‘𝐾)
11 eqid 2621 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
1210, 11, 6lhp1cvr 34765 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
13123ad2ant1 1080 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
14 simp2lr 1127 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑃 𝑊)
15 simp2rr 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑄 𝑊)
16 cdlemb2.l . . 3 = (le‘𝐾)
17 cdlemb2.j . . 3 = (join‘𝐾)
18 cdlemb2.a . . 3 𝐴 = (Atoms‘𝐾)
195, 16, 17, 10, 11, 18cdlemb 34560 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑃𝑄) ∧ (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
201, 2, 3, 8, 9, 13, 14, 15, 19syl323anc 1353 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  1.cp1 16959  ccvr 34029  Atomscatm 34030  HLchlt 34117  LHypclh 34750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-lhyp 34754
This theorem is referenced by:  cdlemd4  34968  cdlemd9  34973  cdleme25a  35121  cdleme25c  35123  cdleme25dN  35124  cdleme26ee  35128  cdlemefs32sn1aw  35182  cdleme43fsv1snlem  35188  cdleme41sn3a  35201  cdleme40m  35235  cdleme40n  35236  cdleme17d3  35264  cdlemeg46gfre  35300  cdleme50trn2  35319  cdlemb3  35374
  Copyright terms: Public domain W3C validator