Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc6 Structured version   Visualization version   GIF version

Theorem cdlemc6 34295
Description: Lemma for cdlemc 34296. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l = (le‘𝐾)
cdlemc3.j = (join‘𝐾)
cdlemc3.m = (meet‘𝐾)
cdlemc3.a 𝐴 = (Atoms‘𝐾)
cdlemc3.h 𝐻 = (LHyp‘𝐾)
cdlemc3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemc3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Proof of Theorem cdlemc6
StepHypRef Expression
1 simp1l 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ HL)
2 simp22l 1173 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
3 simp23l 1175 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑄𝐴)
4 cdlemc3.j . . . . . 6 = (join‘𝐾)
5 cdlemc3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 33466 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
71, 2, 3, 6syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑄) = (𝑄 𝑃))
87oveq2d 6543 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑃 𝑄)) = (𝑄 (𝑄 𝑃)))
9 hllat 33462 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
101, 9syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ Lat)
11 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1211, 5atbase 33388 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
133, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑄 ∈ (Base‘𝐾))
1411, 5atbase 33388 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
152, 14syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃 ∈ (Base‘𝐾))
16 cdlemc3.m . . . . 5 = (meet‘𝐾)
1711, 4, 16latabs2 16860 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 (𝑄 𝑃)) = 𝑄)
1810, 13, 15, 17syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑄 𝑃)) = 𝑄)
198, 18eqtrd 2644 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑃 𝑄)) = 𝑄)
20 simp1 1054 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simp22 1088 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simp21 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
23 simp3 1056 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
24 cdlemc3.l . . . . . . 7 = (le‘𝐾)
25 eqid 2610 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
26 cdlemc3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
27 cdlemc3.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
28 cdlemc3.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
2924, 25, 5, 26, 27, 28trl0 34269 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
3020, 21, 22, 23, 29syl112anc 1322 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
3130oveq2d 6543 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑅𝐹)) = (𝑄 (0.‘𝐾)))
32 hlol 33460 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
331, 32syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ OL)
3411, 4, 25olj01 33324 . . . . 5 ((𝐾 ∈ OL ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 (0.‘𝐾)) = 𝑄)
3533, 13, 34syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (0.‘𝐾)) = 𝑄)
3631, 35eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑅𝐹)) = 𝑄)
3723oveq1d 6542 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) = (𝑃 ((𝑃 𝑄) 𝑊)))
3811, 4, 5hlatjcl 33465 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
391, 2, 3, 38syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑄) ∈ (Base‘𝐾))
40 simp1r 1079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑊𝐻)
4111, 26lhpbase 34096 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4240, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑊 ∈ (Base‘𝐾))
4311, 16latmcl 16824 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4410, 39, 42, 43syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4511, 4latjcom 16831 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → (𝑃 ((𝑃 𝑄) 𝑊)) = (((𝑃 𝑄) 𝑊) 𝑃))
4610, 15, 44, 45syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 ((𝑃 𝑄) 𝑊)) = (((𝑃 𝑄) 𝑊) 𝑃))
4724, 4, 5hlatlej1 33473 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
481, 2, 3, 47syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃 (𝑃 𝑄))
4911, 24, 4, 16, 5atmod2i1 33959 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑄)) → (((𝑃 𝑄) 𝑊) 𝑃) = ((𝑃 𝑄) (𝑊 𝑃)))
501, 2, 39, 42, 48, 49syl131anc 1331 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (((𝑃 𝑄) 𝑊) 𝑃) = ((𝑃 𝑄) (𝑊 𝑃)))
51 eqid 2610 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
5224, 4, 51, 5, 26lhpjat1 34118 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = (1.‘𝐾))
531, 40, 21, 52syl21anc 1317 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑊 𝑃) = (1.‘𝐾))
5453oveq2d 6543 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 𝑄) (𝑊 𝑃)) = ((𝑃 𝑄) (1.‘𝐾)))
5511, 16, 51olm11 33326 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
5633, 39, 55syl2anc 691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
5750, 54, 563eqtrd 2648 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (((𝑃 𝑄) 𝑊) 𝑃) = (𝑃 𝑄))
5837, 46, 573eqtrd 2648 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
5936, 58oveq12d 6545 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) = (𝑄 (𝑃 𝑄)))
6024, 5, 26, 27ltrnateq 34280 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)
6119, 59, 603eqtr4rd 2655 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  lecple 15724  joincjn 16716  meetcmee 16717  0.cp0 16809  1.cp1 16810  Latclat 16817  OLcol 33273  Atomscatm 33362  HLchlt 33449  LHypclh 34082  LTrncltrn 34199  trLctrl 34257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-map 7724  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450  df-psubsp 33601  df-pmap 33602  df-padd 33894  df-lhyp 34086  df-laut 34087  df-ldil 34202  df-ltrn 34203  df-trl 34258
This theorem is referenced by:  cdlemc  34296
  Copyright terms: Public domain W3C validator