Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd8 Structured version   Visualization version   GIF version

Theorem cdlemd8 34306
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l = (le‘𝐾)
cdlemd4.j = (join‘𝐾)
cdlemd4.a 𝐴 = (Atoms‘𝐾)
cdlemd4.h 𝐻 = (LHyp‘𝐾)
cdlemd4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (𝐺𝑅))

Proof of Theorem cdlemd8
StepHypRef Expression
1 simp3r 1082 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = 𝑃)
2 simp11 1083 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1166 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐹𝑇)
4 simp2 1054 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 eqid 2609 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdlemd4.l . . . . . 6 = (le‘𝐾)
7 cdlemd4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 cdlemd4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
9 cdlemd4.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
105, 6, 7, 8, 9ltrnideq 34276 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ (Base‘𝐾)) ↔ (𝐹𝑃) = 𝑃))
112, 3, 4, 10syl3anc 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹 = ( I ↾ (Base‘𝐾)) ↔ (𝐹𝑃) = 𝑃))
121, 11mpbird 245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐹 = ( I ↾ (Base‘𝐾)))
1312fveq1d 6090 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (( I ↾ (Base‘𝐾))‘𝑅))
14 simp3l 1081 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = (𝐺𝑃))
1514, 1eqtr3d 2645 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐺𝑃) = 𝑃)
16 simp12r 1167 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐺𝑇)
175, 6, 7, 8, 9ltrnideq 34276 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝐺𝑃) = 𝑃))
182, 16, 4, 17syl3anc 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝐺𝑃) = 𝑃))
1915, 18mpbird 245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐺 = ( I ↾ (Base‘𝐾)))
2019fveq1d 6090 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐺𝑅) = (( I ↾ (Base‘𝐾))‘𝑅))
2113, 20eqtr4d 2646 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (𝐺𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577   I cid 4938  cres 5030  cfv 5790  Basecbs 15641  lecple 15721  joincjn 16713  Atomscatm 33364  HLchlt 33451  LHypclh 34084  LTrncltrn 34201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7723  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-lhyp 34088  df-laut 34089  df-ldil 34204  df-ltrn 34205  df-trl 34260
This theorem is referenced by:  cdlemd9  34307
  Copyright terms: Public domain W3C validator