Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11c Structured version   Visualization version   GIF version

Theorem cdleme11c 37389
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 37398. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme11c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))

Proof of Theorem cdleme11c
StepHypRef Expression
1 simp3l 1196 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑄))
2 simp11l 1279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ HL)
3 simp12l 1281 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝐴)
4 simp11 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp12 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 simp13 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄𝐴)
7 simp23 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝑄)
8 cdleme11.l . . . . . . . . 9 = (le‘𝐾)
9 cdleme11.j . . . . . . . . 9 = (join‘𝐾)
10 cdleme11.m . . . . . . . . 9 = (meet‘𝐾)
11 cdleme11.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
12 cdleme11.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
13 cdleme11.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
148, 9, 10, 11, 12, 13lhpat2 37173 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
154, 5, 6, 7, 14syl112anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈𝐴)
168, 9, 11hlatlej1 36503 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
172, 3, 15, 16syl3anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃 (𝑃 𝑈))
1817adantr 483 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑃 (𝑃 𝑈))
196, 7jca 514 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑄𝐴𝑃𝑄))
20 simp21 1201 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
21 simp22 1202 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑇𝐴)
22 simp3r 1197 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈 (𝑆 𝑇))
2321, 22jca 514 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑇𝐴𝑈 (𝑆 𝑇)))
248, 9, 10, 11, 12, 13cdleme11a 37388 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑆 𝑈) = (𝑆 𝑇))
254, 5, 19, 20, 23, 24syl122anc 1374 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑆 𝑈) = (𝑆 𝑇))
2625breq2d 5069 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑈) ↔ 𝑃 (𝑆 𝑇)))
27 simp21l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆𝐴)
288, 9, 10, 11, 12, 13cdleme0b 37340 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) → 𝑈𝑃)
294, 5, 6, 28syl3anc 1366 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈𝑃)
3029necomd 3069 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝑈)
318, 9, 11hlatexch2 36524 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑈𝐴) ∧ 𝑃𝑈) → (𝑃 (𝑆 𝑈) → 𝑆 (𝑃 𝑈)))
322, 3, 27, 15, 30, 31syl131anc 1378 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑈) → 𝑆 (𝑃 𝑈)))
3326, 32sylbird 262 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑇) → 𝑆 (𝑃 𝑈)))
3433imp 409 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑆 (𝑃 𝑈))
358, 9, 11hlatlej2 36504 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
362, 3, 6, 35syl3anc 1366 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄 (𝑃 𝑄))
378, 9, 10, 11, 12, 13cdleme0cp 37342 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑈) = (𝑃 𝑄))
384, 5, 6, 37syl12anc 834 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 𝑈) = (𝑃 𝑄))
3936, 38breqtrrd 5085 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄 (𝑃 𝑈))
4039adantr 483 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑄 (𝑃 𝑈))
412hllatd 36492 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ Lat)
42 eqid 2819 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4342, 11atbase 36417 . . . . . . . . . 10 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4427, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆 ∈ (Base‘𝐾))
4542, 11atbase 36417 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
466, 45syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄 ∈ (Base‘𝐾))
4742, 9, 11hlatjcl 36495 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
482, 3, 15, 47syl3anc 1366 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 𝑈) ∈ (Base‘𝐾))
4942, 8, 9latjle12 17664 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑈) ∧ 𝑄 (𝑃 𝑈)) ↔ (𝑆 𝑄) (𝑃 𝑈)))
5041, 44, 46, 48, 49syl13anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ((𝑆 (𝑃 𝑈) ∧ 𝑄 (𝑃 𝑈)) ↔ (𝑆 𝑄) (𝑃 𝑈)))
5150adantr 483 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → ((𝑆 (𝑃 𝑈) ∧ 𝑄 (𝑃 𝑈)) ↔ (𝑆 𝑄) (𝑃 𝑈)))
5234, 40, 51mpbi2and 710 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → (𝑆 𝑄) (𝑃 𝑈))
5342, 11atbase 36417 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
543, 53syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃 ∈ (Base‘𝐾))
5542, 8, 9latnlej1r 17672 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑄)
5641, 44, 54, 46, 1, 55syl131anc 1378 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆𝑄)
578, 9, 11ps-1 36605 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑆𝑄) ∧ (𝑃𝐴𝑈𝐴)) → ((𝑆 𝑄) (𝑃 𝑈) ↔ (𝑆 𝑄) = (𝑃 𝑈)))
582, 27, 6, 56, 3, 15, 57syl132anc 1383 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑄) (𝑃 𝑈) ↔ (𝑆 𝑄) = (𝑃 𝑈)))
5958adantr 483 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → ((𝑆 𝑄) (𝑃 𝑈) ↔ (𝑆 𝑄) = (𝑃 𝑈)))
6052, 59mpbid 234 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → (𝑆 𝑄) = (𝑃 𝑈))
6118, 60breqtrrd 5085 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑃 (𝑆 𝑄))
6261ex 415 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑇) → 𝑃 (𝑆 𝑄)))
638, 9, 11hlatexch2 36524 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑆 𝑄) → 𝑆 (𝑃 𝑄)))
642, 3, 27, 6, 7, 63syl131anc 1378 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑄) → 𝑆 (𝑃 𝑄)))
6562, 64syld 47 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑇) → 𝑆 (𝑃 𝑄)))
661, 65mtod 200 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36391  HLchlt 36478  LHypclh 37112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-psubsp 36631  df-pmap 36632  df-padd 36924  df-lhyp 37116
This theorem is referenced by:  cdleme11dN  37390  cdleme11e  37391
  Copyright terms: Public domain W3C validator